Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhung Vũ

Bài 3. Cho tam giác ABC cân tại A , AD là đường  phân giác. Trên tia đối của tia DA lấy điểm E sao cho DE = DA.

a) Chứng minh rằng tam giác ABD = tam giác ACD

b) Cho AB= 13 cm; BC = 10 cm. Tính độ dài cạnh AD.

c) Chứng minh rằng tam giác ACE cân.

d) Gọi M là trung điểm cạnh AC, N là giao điểm của BC và EM. Chứng minh: BC = 3NC

Nguyễn Lê Phước Thịnh
27 tháng 6 2021 lúc 23:30

b) Xét ΔADB vuông tại D và ΔEDC vuông tại D có 

DB=DC(cmt)

DA=DE(gt)

Do đó: ΔADB=ΔEDC(hai cạnh góc vuông)

Suy ra: AB=EC(Hai cạnh tương ứng)

mà AB=AC(ΔBAC cân tại A)

nên CA=CE

Xét ΔCAE có CA=CE(cmt)

nên ΔCAE cân tại C(Định nghĩa tam giác cân)

Nhung Vũ
27 tháng 6 2021 lúc 23:21

giúp mình làm với , cảm ơn nhiều :33

 

Nguyễn Lê Phước Thịnh
27 tháng 6 2021 lúc 23:29

a) Xét ΔABD và ΔACD có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

b) Ta có: ΔABD=ΔACD(cmt)

nên \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

hay AD⊥BC

Ta có: ΔABD=ΔACD(cmt)

nên BD=CD(hai cạnh tương ứng)

mà BD+CD=BC(D nằm giữa B và C)

nên \(BD=CD=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔADB vuông tại D, ta được:

\(AB^2=AD^2+BD^2\)

\(\Leftrightarrow AD^2=AB^2-BD^2=13^2-5^2=144\)

hay AD=12(cm)

Vậy: AD=12cm


Các câu hỏi tương tự
Kim TaeHyung
Xem chi tiết
Thái Thanh Vân
Xem chi tiết
Andy Bảo Bình
Xem chi tiết
Anh Tài Lê
Xem chi tiết
huỳnh lê huyền trang
Xem chi tiết
hoàng nguyễn anh thảo
Xem chi tiết
Hồ Ngọc Trà My
Xem chi tiết
Uzumaki Uchiha Natsumi
Xem chi tiết
Phương Uyên Võ Ngọc
Xem chi tiết