Bài 2:cho tam giácc ABC cân tại A (A<90 độ).vẽ tia phân giác AH của góc BAC (H thuộc BC) biết AB=15cm,BH=9cm. Bài 3:Chứng minh rằng:△ABHcho tma giác ABC cân tại A .Trên tia đối của BC lấy điểm M ,trên tia đối của CB lấy N sao cho BM=CN, Vẽ BD vuông góc AM tại D , CE vuông góc AN tại E.Cho biết AB=10cm,BH=6cm. Tính độ dài đoạn AH a)Chứng minh :△AMN cân b)chứng minh :DB=CE
Mình xin sửa lại đề một chút
Bài 3: Cho ΔABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN. Vẽ BD⊥AM tại D và CE⊥AN tại E.
a) Cm ΔAMN cân
b) Cm DB=CE
Bài làm:
a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC(ΔABC cân tại A)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
BM=CN(gt)
Do đó: ΔABM=ΔACN(c-g-c)
Suy ra: AM=AN(hai cạnh tương ứng)
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
b) Xét ΔMBD vuông tại D và ΔNCE vuông tại E có
BM=CN(gt)
\(\widehat{M}=\widehat{N}\)(ΔABM=ΔACN)
Do đó: ΔMBD=ΔNCE(Cạnh huyền-góc nhọn)
Suy ra: DB=EC(Hai cạnh tương ứng)
Bài 2:
Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))
AH chung
Do đó: ΔABH=ΔACH(c-g-c)