Ta có : \(-x^2+x+6\)
\(=-\left(x^2-x-6\right)\)
\(=-\left[\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{25}{4}\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right]\)
Do : \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\Rightarrow-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right]\le\dfrac{25}{4}\)
Vậy GTLN của biểu thức là \(\dfrac{25}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)