Bổ sug đề: Cho (O), BD,CE là các dây của (O)
Sửa đề: Chứng minh góc BOE=góc EDB+góc ECB
1/2(góc EDB+góc ECB)
=1/2(1/2sđ cung EB+1/2sđ cung EB)
=1/2sđ cung EB
=1/2*góc BOE
=>góc EDB+góc ECB=góc BOE
Bổ sug đề: Cho (O), BD,CE là các dây của (O)
Sửa đề: Chứng minh góc BOE=góc EDB+góc ECB
1/2(góc EDB+góc ECB)
=1/2(1/2sđ cung EB+1/2sđ cung EB)
=1/2sđ cung EB
=1/2*góc BOE
=>góc EDB+góc ECB=góc BOE
Cho hai đoạn thẳng BD và CE cắt nhau tại A. Hai tia phân giác của 2 góc \(\widehat{AED}\)và \(\widehat{ABC}\)cắt nhau tại O. CMr: BOE=\(\frac{1}{2}\)\(\widehat{EDB}+\widehat{ECB}\)
1.Cho hai đoạn thẳng AC và BD cắt nhau tại O. Các tia phân giác của \(\widehat{ODA}\) và \(\widehat{OCB}\) cát nhau tại I. DI cắt OA tại E và CI cắt OB tại F. CMR: \(\widehat{I}=\frac{1}{2}\left(\widehat{DAC}+\widehat{DBC}\right)\)
cho \(\Delta ABC\)trên tia đối của AB lấy , từ D kẻ đường thẳng BC cắt tia đối của AC tại E . Hai tia phân giác của hai góc \(\widehat{ADE},\widehat{ABC}\)cắt nhau tại O . Chứng minh rằng \(\widehat{BOE}=\frac{1}{2}\widehat{ABC}+\widehat{ACB}\)
Cho tam giác ABC có \(\widehat{B}\) = 90◦ và \(\widehat{A}=\widehat{C}\) . Hai tia phân giác AD và CE lần lượt của các góc \(\widehat{BAC},\widehat{ACB}\) cắt nhau tại I. Chứng minh rằng ID = IE.
Bài 3. Cho tam giác ABC có \(\widehat{BAC}=a\left(0^o< a< 180^o\right)\) , hai đường phân giác của góc B, C cắt nhau tại T. Tính theo \(\widehat{BTC}\) theo a. Tìm a biết \(\widehat{BTC}=2\times\widehat{BAC}\)
1, Cho tứ giác ABCD có \(\widehat{B}\)+ \(\widehat{D}\) =180 độ ,AC là tia phân giác của góc A.Chứng minh CB=CD.
2, Cho tứ giác ABCD có \(\widehat{A}\) = a , \(\widehat{C}\) = b .Hai đường thẳng AD và BC cắt nhau tại E, hai đường thẳng AB và DC cắt nhau tại F.Các tia phân giác của hai góc AEB và AFD cắt nhau tại I.Tính góc \(\widehat{EIF}\) theo a,b
Cho tam giác ABC,\(\widehat{A}=a^o\left(0< a< 90^o\right)\).Các phân giác BD,CE cắt nhau tại O.Tia phân giác của góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác của góc ngoài tại đỉnh C cắt tia BO tại N.
a)Tính số đo \(\widehat{BOC}\).
b)Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c)Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)
Cho tam giác ABC,\(\widehat{A}=a^o\left(0< a< 90^o\right)\).Các phân giác BD,CE cắt nhau tại O.Tia phân giác của góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác của góc ngoài tại đỉnh C cắt tia BO tại N.
a)Tính số đo \(\widehat{BOC}\).
b)Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c)Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)
Cho tam giác ABC,\(\widehat{A}=a^o\left(0< a< 90^o\right)\).Các phân giác BD,CE cắt nhau tại O.Tia phân giác của góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác của góc ngoài tại đỉnh C cắt tia BO tại N.
a)Tính số đo \(\widehat{BOC}\).
b)Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c)Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)