Xét ΔABC có EF//BC
nên AE/EC=AF/FB
Xét ΔBAC có BE là phân giác
nên AE/EC=AB/BC
=>AF/FB=AB/BC
=>AF/FB=CA/CB
=>CF là phân giác của góc ACB
Xét ΔABC có EF//BC
nên AE/EC=AF/FB
Xét ΔBAC có BE là phân giác
nên AE/EC=AB/BC
=>AF/FB=AB/BC
=>AF/FB=CA/CB
=>CF là phân giác của góc ACB
Cho tam gác abc có góc a=75 độ, góc c=35 độ, m là trung điểm của bc. đường thẳng đi qua m và vuông góc với phân giác của góc a cắt ab, ac lần lượt tại e và f
a/ chứng minh rằng: be=cf
b/ đường thẳng qua e song song với bc và đường thẳng qua c song song với ba cắt nhau tại j. chứng minh cfj là tam giác cân. từ đó, so sánh bc và ef
c/ tia phân giác ngoài của góc a của tam giác abc cắt đường thẳng bc tại i. Gọi n là điểm thuộc bi sao cho bn=ab. chứng minh: ni=ac
Cho tam giác ABC có AB<AC. Từ trung điểm D của BC vẽ đường thẳng vuông góc với tia phân giác của góc A tại H. Đường thẳng này cắt tia AB tại E và cắt AC tại F. Vẽ BM//EF a, C/m ABM là tam giác cân b, C/m MF=BE=CF c, Qua D vẽ đường vuông góc với BC cắt tia AH tại I. C/m IF vuông góc với AC
Cho tam giác ABC có ba góc nhọn, AB < AC. Kẻ đường cao AD. Vẽ điểm M sao cho AB là trung trực của DM, vẽ điểm N sao cho AC là trung trực của DN.
a) Chứng minh tam giác AMN cân tại A
b) Đường thẳng MN cắt AB, AC lần lượt tại F, E. Chứng minh DA là tia phân giác của E D F ^ .
c) Chứng minh EB là tia phân giác của D E F ^ .
d) Chứng minh B E ⊥ A C .
e) Chứng minh AD, BE, CF đồng quy.
cho tam giác cân ABC ( AB=AC). Các tia phân giác của góc B, C cát AC và AB tại E, F
a)Chứng minh: BE=CF
b) gọi I là giao điểm của BE và CF. Chứng minh AI là Phân giác của góc A.
Cho Tam giác ABC cân tại A. Vẽ BE vuông góc AC và CF vuông góc AN( E thuộc AC, F thuộc AB) a) Chứng minh BF =CE b) Chứng minh: EF song song BC c) Gọi H là giao điểm BE và CF. Trên tia tối của tia FH lấy điểm I sao cho FI= FH. Trên tia đối tia EH lấy điểm K sao cho EK = EH. Chứng minh tam giác AIK cân.
Cho tam giác ABC (AB<AC). Qua trung điểm M của BC kẻ đường thẳng vuông góc với tia phân giác góc A tại D, đường thẳng này cắt AB, AC lần lượt tại E, F:
a. Chứng minh tam giác AEF cân.
b. Chứng minh BE = CF; AE = ( AB + AC ): 2.
c. So sánh EF và BC.
d. Tia phân giác ngoài tại đỉnh A của tam giác ABC cắt CB tại I, cho góc BAC bằng 750 góc ACB bằng 350. Chứng minh chu vi tam giác ABC bằng CI.
Cho tam giác ABC vuông tại A. Vẽ tia Cx vuông góc với BC cắt tia phân giác goc B tại F, BF cắt AC tại E. Vẽ CD vuông góc với EF( D thuộc EF). Kéo dài AB cắt CD tại S. Chứng minh rằng:
a) CD là tia phân giác của góc ECF
b) DE=DF
c) SE//CF
Bài 1: Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và // với BC cắt AC ở E. Đường thẳng qua E và // với AB cắt BC ở F. CMR:
a) AD = EF
b) Tam giác ADE = tam giác EFC
Bài 2: Cho tam giác ABC, tia phân giác của góc C cắt AB ở D. Trên tia đối của tia CA lấy điểm E sao cho CE = CB.
a) CM CD//EB
b) Tia phân giác của góc E cắt đường thẳng CD tại F. Vẽ CK vuông góc với EF tại K. CM CK là tia phân giác của góc ECF
Bài 3: Cho tam giác ABC cân tại A, trên tia AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho CE=BD, DE cắt BC tại I. Trên tia đối của tia BC lấy điểm F sao cho BF=CI. CMR:
a) Tam giác BFD = tam giác CIE
b) Tam giác DFI cân
c) I là trung điểm của DE
giúp mình với nhé!
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân