1, \(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy \(x\) \(\in\) {-3; 3}
7, (3\(x\) + 1)2 - 16 = 0
(3\(x\) + 1 - 4)(3\(x\) + 1 + 4) = 0
(3\(x\) - 3).(3\(x\) + 5) = 0
\(\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=3\\3x=-5\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=\dfrac{-5}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {1; - \(\dfrac{5}{3}\)}
10, (\(x\) + 3)2 - \(x^2\) = 45
[(\(x\) + 3) - \(x\)].[(\(x\) + 3) + \(x\)] = 45
3.(2\(x\) + 3) = 45
2\(x\) + 3 = 15
2\(x\) = 12
\(x\) = 6
2, 25 - \(x^2\) = 0
(5 - \(x\))(5 + \(x\)) = 0
\(\left[{}\begin{matrix}5-x=0\\5+x=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy \(x\) \(\in\) { -5; 5}
5, 4\(x^2\) - 36 = 0
4.(\(x^2\) - 9) = 0
\(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-3; 3}
4\(x^2\) - 4 = 0
4\(x^2\) = 4
\(x^2\) = 1
\(x\) = \(\mp\) 1
Vậy \(x\) \(\in\) {-1; 1}
8, (2\(x\) - 3)2 - 49 = 0
(2\(x\) - 3 - 7).(2\(x\) - 3 + 7) = 0
(2\(x\) - 10).(2\(x\) + 4) =0
\(\left[{}\begin{matrix}2x-10=0\\2x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(x\) \(\in\) {\(-2\); 5}
11, (5\(x\) - 4)2 - 49\(x^2\) = 0
(5\(x\) - 4 - 7\(x\)).(5\(x\) - 4 + 7\(x\)) = 0
(-2\(x\) - 4).(12\(x\) - 4) = 0
\(\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-2; \(\dfrac{1}{3}\)}
3, -\(x^2\) + 36 = 0
\(x^2\) = 36
\(x\) = \(\pm\) 6
Vậy \(x\) \(\in\){ -6; 6}
6, 4\(x^2\) - 36 = 0
( \(x^2\) - 9). 4 = 0
\(x^2\) - 9 = 0
\(x\) = \(\mp\) 3
Vậy \(x\) \(\in\) {-3; 3}
9, (2\(x\) - 5)2 - \(x^2\) = 0
(2\(x\) - 5 - \(x\)).(2\(x\) - 5 + \(x\)) = 0
(\(x\) - 5).(3\(x\) - 5) = 0
\(\left[{}\begin{matrix}x=5\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {\(\dfrac{5}{3}\); 5}
12, 16.(\(x\) - 1)2 - 25 = 0
(4\(x\) - 4 - 5).(4\(x\) - 4 + 5) = 0
(4\(x\) - 9).(4\(x\) + 1) = 0
\(\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{-1}{4}\end{matrix}\right.\)
Vậy \(x\) \(\in\) { - \(\dfrac{1}{4}\); \(\dfrac{9}{4}\)}