Xét ΔCDA và ΔEAC có
\(\widehat{DCA}=\widehat{EAC}\)
AC chung
\(\widehat{DAC}=\widehat{ECA}\)
Do đó: ΔCDA=ΔEAC
=>CE=AD và \(\widehat{IAC}=\widehat{ICA}\)
=>IA=IC
IA+ID=AD
IC+IE=CE
mà AD=CE và IA=IC
nên ID=IE
Xét ΔCDA và ΔEAC có
\(\widehat{DCA}=\widehat{EAC}\)
AC chung
\(\widehat{DAC}=\widehat{ECA}\)
Do đó: ΔCDA=ΔEAC
=>CE=AD và \(\widehat{IAC}=\widehat{ICA}\)
=>IA=IC
IA+ID=AD
IC+IE=CE
mà AD=CE và IA=IC
nên ID=IE
Bài 14. Cho tam giác ABC có Bb = 90◦ và Ab = Cb. Hai tia phân giác AD và CE lần lượt của các góc BAC ,ACB cắt nhau tại I. Chứng minh rằng ID = IE.
Cho tam giác ABC có \(\widehat{B}\) = 90◦ và \(\widehat{A}=\widehat{C}\) . Hai tia phân giác AD và CE lần lượt của các góc \(\widehat{BAC},\widehat{ACB}\) cắt nhau tại I. Chứng minh rằng ID = IE.
cho tam giác ABC có góc B =60°. Hai tia phân giác AD va CE của các góc BAC và góc ACB cắt nhau ở . Chung minh rằng ID=IE
Cho tam giác ABC có góc B bằng 60o. Hai tia phân giác AD và CE của các góc BAC và góc ACB (D \(\in\)BC, E\(\in\)AB) cắt nhau tại I. Chứng minh rằng: ID = IE.
Cho tam giác ABC có góc B=60o. Hai tia phân giác AD và CE của các góc BAC và ACB (D thuôc BC; E thuộc AB) cắt nhau tại I.
Cmr ID=IE
Cho tam giác ABC có góc B = 600. Hai tia phân giác AD và CE của các góc BAC; ACB cắt nhau tại I và D thuộc BC; E thuộc AB.
CMR: ID = IE
Cho tam giác ABC có góc B=600. Hai tia phân giác AD và CE của các góc BAC; ACB; cắt nhau tại I ( D thuộc AB; E thuộc AB).
CMR: ID = IE
cho tam giác ABC, GÓC B=60 độ. 2 tia phân giác AD, CE của các góc BAC, ACB cắt nhau tại I. cmr ID=IE
Cho tam giacs ABC có B=60 độ .Hai tia phân giác AD và CE của 2 góc BAC và ACB cắt nhau ở I chứng minh ID=IE
có hình thì cho em luôn em cảm ơn