Cho tam giác ABC. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh tam giác AMB = tam giác CMD.
b) Từ A và C vẽ các đường vuông góc với BD, cắt BD lần lượt tại K và H. Chứng minh AK = CH.
c) Gọi E và F lần lượt là trung điểm của BC và AD. Chứng minh 3 điểm E, M, F thẳng hàng.
Cho tam giác ABC . Gọi M là trung điểm của AC . Trên tia đối của tia MB lấy điểm D sao cho MB=MD
a) Chứng minh tam giác AMB = tam giác CMD
b) Từ A và C vẽ các đường vuông góc với BD , cắt BD lần lượt tại K và H . Chứng minh AK=CH
c) Gọi E và F lần lượt là trung điểm của BC và AD . Chứng minh 3 điểm E,M,F thẳng hàng
Cho tam giác ABC . Gọi M là trung điểm của AC . Trên tia đối của tia MB lấy điểm D sao cho MB=MD
a) Chứng minh tam giác AMB = tam giác CMD
b) Từ A và C vẽ các đường vuông góc với BD , cắt BD lần lượt tại K và H . Chứng minh AK=CH
c) Gọi E và F lần lượt là trung điểm của BC và AD . Chứng minh 3 điểm E,M,F thẳng hàng
Bài 4. Cho tam giác ABC có hai đường trung tuyến BD và CF cắt nhau ở G. AG kéo dài cắt BC
tại H.
a) So sánh AHB và AHC.
b) Gọi I, K lần lượt là trung điểm của GA và GC. Chứng minh: AK, BD, CI đồng quy.
. Cho tam giác ABC có hai đường trung tuyến BD và CF cắt nhau ở G. AG kéo dài cắt BC
tại H.
a) So sánh AHB và AHC.
b) Gọi I, K lần lượt là trung điểm của GA và GC. Chứng minh: AK, BD, CI đồng quy.
Cho tam giác ABC, trung tuyên AM. Trên tia đối của tia MA lấy D sao cho MD = MA.
a) Chứng minh AB // CD và AB = CD.
b) Gọi E và F lần lượt là trung điểm của AC và BD. AF cắt BC tại I, DE cắt BC tại K. Chứng minh I là trọng tâm tam giác ABD, K là trọng tâm tam giác ACD.
c) Chứng minh BI = IK = KC.
d) Chứng minh E, M, F thẳng hàng.
Bài 1: Cgo tam giác ABC, trên các tia đối của các tia AB, AC lần lượt lấy các điểm D và E sao cho AD = AB, AE = AC. Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh A là trrung điểm của MN
Bài 2: Cho góc nhọn xOy, trên tia Ox lấy 2 điểm A và B sao cho OA<OB. Trên tia Oy lấy 2 điểm C và D sao cho OC = OB, OD = OA. Hai đoạn thẳng AC và BD cắt nhau tại E. Chứng minh tam giác EAB = tam giác EDC
Bài 3: Cho tam giác ABC, AB<AC. Gọi M là trung điểm của BC. Vẽ BH vuông góc với AM, CK vuông góc với AM. Chứng minh rằng BH = CK
Bài 1: Cgo tam giác ABC, trên các tia đối của các tia AB, AC lần lượt lấy các điểm D và E sao cho AD = AB, AE = AC. Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh A là trrung điểm của MN
Bài 2: Cho góc nhọn xOy, trên tia Ox lấy 2 điểm A và B sao cho OA<OB. Trên tia Oy lấy 2 điểm C và D sao cho OC = OB, OD = OA. Hai đoạn thẳng AC và BD cắt nhau tại E. Chứng minh tam giác EAB = tam giác EDC
Bài 3: Cho tam giác ABC, AB<AC. Gọi M là trung điểm của BC. Vẽ BH vuông góc với AM, CK vuông góc với AM. Chứng minh rằng BH = CK
Bài 4 Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Nối A với M. Trên tia
đối của các tia BC và CB lần lượt lấy 2 điểm D và E sao cho BD = CE.
a)Chứng minh: ABD = ACE.
b)Chứng minh: Tia AM là tia phân giác chung của 2 góc BAC và DAE.
c) Lấy các điểm H, K lần lượt trên cạnh AD, AE sao cho: AH = AK > AB. Chứng minh
rằng: BH = CK.
d) Gọi O là giao điểm của đường thẳng HB với đường thẳng AM. Chứng minh: OB = OC.
e) Chứng minh: Ba điểm O, C, K thẳng hàng.