Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đức Ngô Minh

Bài 10. Cho tam giác ABC vuông tại A, đường phân giác BE, kẻ EH vuông góc với BC tại H, gọi K là giao điểm của hai đường thẳng BA và HE a) Chứng minh AE = HE, AB = BH b) Chứng minh tam giác BCK là tam giác cân c) Tính độ dài BK, AC biết AB = 6cm, BC = 10cm

Nguyễn Tá Phát
8 tháng 3 2022 lúc 19:48

. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

 

\widehat{BAE} =\widehat{BHE} =90^0

 (gt)

 

 

\widehat{B_1} =\widehat{B_2}

( BE là đường phân giác BE).

 

BE là cạnh chung.

=> ΔABE = ΔHBE

 

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

 

\widehat{KAE} =\widehat{CHE} =90^0

 (gt)

 

EA = EH (cmt)

 

\widehat{E_1} =\widehat{E_2}

( đối đỉnh).

 

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 19:48

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

EB chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

Suy ra: BA=BH và EA=EH

b: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đó: ΔAEK=ΔHEC

Suy ra: AK=HC

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

hay ΔBKC cân tại B

c: BK=BC=10cm

=>AC=8cm


Các câu hỏi tương tự
Lê Minh Hoàng
Xem chi tiết
linh
Xem chi tiết
Anh Đức đẹp trai
Xem chi tiết
Nguyên Thủy Tú
Xem chi tiết
nguyễn thị hồng liên
Xem chi tiết
Bim Bim Cháy
Xem chi tiết
Trà My
Xem chi tiết
nguyễn thanh thảo
Xem chi tiết
Thanh Thảo
Xem chi tiết