Bài 9: Cho tam giác ABC nội tiếp (O); đường cao AD, BE, CF, trực tâm H, M là trung điểm BC. Gọi AK, AL là tiếp tuyến của (BC). a) Chứng minh: K, H, L thẳng hàng. b) Tiếp tuyến tại B và E của (BC) cắt nhau tại T. Gọi TA cắt (O) tại P. Chúng minh: M, H, P thẳng hàng.
Bài 11: Cho tam giác ABC nội tiếp (O), đường cao AD, BE, CF, trực tâm H, M là trung điểm BC. Tia MH cắt (O) tại K. Tiếp tuyến tại B, C của (O) cắt nhau tại T.TB, TC cắt EF tại P, Q.a) Chứng minh M là tâm nội tiếp tam giác TPQ.KEDMTb) Chứng minh: M,B, P, K, E đồng viên. c) Chứng minh: KP, CF cắt nhau trên (O). d) Chứng minh: TPKQ nội tiếp (J). e) Chứng minh (J) tiếp xúc (O).
Cho tam giác ABC nhọn AB<AC nội tiếp (O). 3 đường cao AD,BE,CF của tam giác ABC cắt nhau tại H. Đường thẳng EF cắt (O) tại M và N ( M thuộc cung nhỏ AB ) . Gọi I là trung điểm của BC , MI cắt (O) tại K . Chứng minh : AK vuông góc với HN
Cho tam giác ABC nhọn nội tiếp đường tròn (O) .Các đường cao AD,BE,CF cắt nhau tại H. Gọi K là giao điểm của 2 đường thẳng BC,EF. Đường thẳng đi qua F song song với AC cắt AK,AD tại M,N .Chứng minh MF=NF
Cho tam giác ABC nhọn nội tiếp đường tròn (O) .Các đường cao AD,BE,CF cắt nhau tại H. Gọi K là giao điểm của 2 đường thẳng BC,EF. Đường thẳng đi qua F song song với AC cắt AK,AD tại M,N .Chứng minh MF=NF
Cho ΔABCΔABC nội tiếp (O), đường cao BE, CF cắt nhau tại H, EF cắt BC tại K, AK cắt (O) tại M. Gọi I là trung điểm BC. Chứng minh M,H,I thẳng hàng
Bài 7: Cho tam giác ABC nội tiếp (O), đường cao AD, BE, CF, trực tâm H. G BE, CF cắt (O) tại P, Q. Gọi PQ cắt AC tại K. Gọi L thuộc AB sao cho QL/BC. a) Chứng minh: AKHQ nội tiếp. c) Gọi (AKL) cắt (O) tại T. Chứng minh: ZATH=90.TFHDMb) Chứng minh: AHBL, NHCK.
Bài 3. Cho tam giác nhọn ABC nội tiếp (O) , các đường cao AD, BE ,CF cắt nhau tại điểm H .Gọi M là trung điểm của BC , đường tròn tâm I đường kính AH cắt lại (O) tại N (khác A) , AHcắt EF tại K .
a. Chứng minh: E F, nằm trên đường
tròn tâm I và M, H ,N thẳng hàng.
b. Chứng minh: HK/HD=AK/AD
Cho tam giác ABC nhọn nội tiếp đường tròn (O) (AB < AC), đường tròn tâm M đường kính BC cắt AB, AC lần lượt tại F và E.Gọi H là giao điểm BE và CF, D là giao điểm của AH và BC.Vẽ đường kính AK của (O). a) Chứng minh AD là đường cao của tam giác ABC và tứ giác BFHD nội tiếp đường tròn. b) Đường thẳng EF cắt đường thẳng BC tại S, cắt (O) tại P và Q (nằm giữa S và Q). Chứng minh SP.SQ = SF.SE c) Gọi L là điểm đối xứng của C qua AK, AL cắt EF tại N.Chứng minh L thuộc (O) và DHNL nội tiếp.
giúp mình giải câu c. tứ giác DHNL nội tiếp