1) Cho\(A=\frac{5\cdot x-4}{2\cdot x+5}-\frac{3\cdot y-3\cdot x}{2\cdot y-5}và3\cdot x-y=5\).Tính A
bài 1: tìm x, biết
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\frac{30}{62}\cdot\frac{31}{64}=2^x\)
bài 2:
cho: p = \(\left(x-4\right)^{\left(x-5\right)^{\left(x-6\right)^{\left(x+5\right)}}}\)
tính p(x)=7
giúp mk vs!!!!!
mk cần gấp!!
tìm s biết \(\frac{1+2\cdot y}{18}=\frac{1+4\cdot y}{24}=\frac{1+6\cdot y}{6\cdot x}\)
Tìm x,y,z biết :
a)\(\frac{3}{4}\cdot\left(x+\frac{1}{2}\right)=\frac{1}{2}\)
b) \(x\cdot\left(x-\frac{3}{2}\right)=0\)
c)\(|\frac{1}{4}-x|+\frac{2}{3}=\frac{1}{2}\)
d)\(|3\cdot x-2|=|x+1|\)
e)\(|x+\frac{3}{4}|+|x-y|=0\)
g)\(|4\cdot x-2|-2\cdot x=\frac{3}{4}\)
h)\(|5\cdot x+1|-2\cdot x=1\)
i)\((x-\frac{3}{2})\cdot\left(2\cdot x+1\right)>0\)
k)\(|x+\frac{1}{2}|+|x+y+z|+|\frac{1}{3}+y|=0\)
l)\(|2\cdot x-\frac{1}{2}|-\frac{1}{4}=3\)
GIÚP MK VS, CẢM ƠN MỌI NGƯỜI RẤT NHÌU !!!
tìm x biết
a, \(\frac{1}{2}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot...\cdot\frac{30}{62}\cdot\frac{31}{64}=4^x\)
b, \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^x\)
c,\(\left|4x+3\right|-\left|x-1\right|=7\)
mong các bạn giúp !!!
\(\left(\frac{1}{7}\cdot x-\frac{2}{7}\right)\cdot\left(-\frac{1}{5}\cdot x+\frac{3}{5}\right)\cdot\left(\frac{1}{3}\cdot x+\frac{4}{3}\right)=0\)
TÌM x biết:
a) \(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot\frac{5}{12}\cdot...\cdot\frac{30}{62}\cdot\frac{31}{62}=4^x\)
b) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^x\)
c)\(\left|4x+3\right|-\left|x-1\right|=7\)
Bai1:tìm x biết
a, (\(\frac{1}{7}\)\(\cdot\) x -\(\frac{2}{7}\))(-\(\frac{1}{5}x+\frac{3}{5}\))(\(\frac{1}{3}\cdot x+\frac{4}{3}\))
b, \(\frac{1}{6}\cdot x+\frac{1}{10}\cdot x-\frac{4}{5}\cdot x+1=0\)
c,(\(x-\frac{2}{9}\))^3=(\(\frac{2}{3}\))^6
d, (x-7)^x+1-(x-7)^x+11=0
TÌM x
\(\left(\left(\frac{3}{4}\cdot x+5\right)-\left(\frac{2}{3}\cdot x-4\right)-\left(\frac{1}{6}\cdot x+1\right)\right)=\left(\frac{1}{3}\cdot x+4\right)-\left(\frac{1}{3}-3\right)\)