mk mới lớp 8 nên ko biết làm bài lớp 9
mk mới lớp 8 nên ko biết làm bài lớp 9
Cho hai số nguyên dương a,b thỏa mãn √(a2+1)(b2+1)=√2022(a2+1)(b2+1)=2022. Tính A=a√b2+1+b+√a2+1
Bài 1: Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 - 2xy - x + y + 3 = 0
Bài 2: Giải phương trình nghiệm nguyên: ( y2+1 )( 2x2+x+1) = x+5
Bài 3: Cho các số thực dương a,b thỏa mãn a + b = 2.
Tìm giá trị nhỏ nhất của biểu thức : P = \(\frac{a}{\sqrt{4-a^2}}+\frac{b}{\sqrt{4-b^2}}\)
Bài 1: Tìm 6 SNT thỏa mãn \(p_1^2+p_2^2+p_3^2+p_4^2+p_5^2=p_6^2\)
Bài 2: Tìm SNT p để \(\frac{p+1}{2}\)và \(\frac{p^2+1}{2}\)là số chính phương
Bài 3: Tìm tất cả các cặp số nguyên dương (a,b) thỏa mãn đồng thời 2 điều kiện 4a+1 và 4b-1 nguyên tố cùng nhau; a+b là ước của 16ab+1
Bài 1:Cho a,b,c là các số dương thay đổi thỏa mãn điều kiện :
\(5a^2+2abc+4b^2+3c^2=60\)
Tìm giá trị lớn nhất của biểu thức: \(A=a+b+c\)
Bài 2:
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn:
\(x^2+xy-2013x-2014y-2015=0\)
Cho a, b, c là các số thực dương thỏa mãn b2 + c2 ≤ a2. Tìm Min:\(M=\dfrac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)
tìm các số nguyên dương a;b;c;d thỏa mãn a+2b+3c=3d!+1.biết tồn tại các số nguyên tố p;q thỏa mãn a=(p+1)(2p+1)=(q+1)(q-1)2
Tìm các số nguyên dương a,b thỏa mãn `a^3 + a^2 + 2a vdots ab-1`.
Cho hai số thực dương a và b thỏa mãn a + b ≤ 2.
Chứng minh a2/a2 + b2/b2 + a ≤ 1
Tìm các số nguyên dương a,b thỏa mãn: a3+b3-3ab+1 là số nguyên tố