Bài 1
\(A=x^2+2xy+y^2-4x-4x+1\)
\(A=\left(x+y\right)^2-8x+1\)
\(\)Thay \(x+y=3\) vào biểu thức ta có :
\(A=3^2-8x+1\)
\(A=10-8x\)
Bài 2
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)
\(=\left[\left(5a-3b\right)+8c\right]\left[\left(5a-3b\right)-8c\right]\)
\(=\left(5a-3b\right)^2-64c^2\)
\(=25a^2-30ab+9b^2-64c^2\)
\(=25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2\)
Vậy đẳng thức đã được chứng minh .