a:
AH=căn 20^2-12^2=16cm
AC=5/3*16=80/3cm
HC=căn AC^2-AH^2=căn (80/3)^2-16^2=64/3cm
Xét ΔABH và ΔCAH có
AB/CA=BH/AB=AH/CH
=>ΔABH đồng dạng với ΔCAH
b: ΔABH đồng dạng với ΔCAH
=>góc CAH=góc ABH
=>góc CAH+góc BAH=90 độ
=>góc BAC=90 độ
a:
AH=căn 20^2-12^2=16cm
AC=5/3*16=80/3cm
HC=căn AC^2-AH^2=căn (80/3)^2-16^2=64/3cm
Xét ΔABH và ΔCAH có
AB/CA=BH/AB=AH/CH
=>ΔABH đồng dạng với ΔCAH
b: ΔABH đồng dạng với ΔCAH
=>góc CAH=góc ABH
=>góc CAH+góc BAH=90 độ
=>góc BAC=90 độ
cho tam giác ABH vuông tại H. có AB=20, BH=12, trên tia đối của tia HB lấy điểm C sao cho AC=5353 AH. Chứng minh: a) tam giác ABH đồng dạng tam giác CAH. b) ˆBACBAC^ =900. kẻ hình nữa nha.
Mọi người giúp em vs ạ e cảm ơn nhiều ạ
Tam giác ABH vuông tại H có AB = 20cm, BH = 12cm. Trên tia đối của tia HB lấy điểm C sao cho AC = 5/3AH
a, chứng minh rằng tam giác ABH và tam giác CAH đồng dạng
b, tính góc BAC
Cho hình vuông ABCD lấy K trên BC nối A với k cắt tia đối của CD tại Kể BH vuông góc vs AK tại H a .cm tam giác ABH đồng dạng với tam giác AKB b. Cm AB. AC = AE. HB rồi suy ra AH. AK = AE. BH giúp vs ạ 😅
Cho tam giác ABH vuông ở H có AB = 20cm, BH = 12cm. Trên tia đối cỉa BH lấy điểm C sao cho AC= 5/3 AH. Tính góc BAC.
Bài 3: Cho tam giác ABC có AB < AC. Gọi AH là đường cao, trên tia đối của tia HB lấy điểm D sao cho HD = HB.
a/ Chứng minh: tam giác ABH = tam giác ADH
b/ Chứng minh: tam giác ABD cân.
c/ Chứng minh AH là đường phân giác của góc BAD
Bài 3: Cho tam giác ABC có AB < AC. Gọi AH là đường cao, trên tia đối của tia HB lấy điểm D sao cho HD = HB.
a/ Chứng minh: tam giác ABH = tam giác ADH
b/ Chứng minh: tam giác ABD cân.
c/ Chứng minh AH là đường phân giác của góc BAD
Cho tam giác ABC vuông góc tại A có AB=5cm, AC=12cm. Từ A kẻ AH vuông góc BC ( H thuộc BC ) a)chứng minh: tam giác ABH đồng dạng tam giác CAH. b)tính diện tích tam giác ABC và chu vi tam giác ABH. c)gọi M,N lần lượt là trung điểm của BH và AH. Chứng minh AM vuông góc CN
Cho tam giác ABC vuông tại A ,AB bằng 9 cm ,AC bằng 12 cm .Kẻ AH vuông góc với BC tại H
a/Chứng minh tam giác abh đồng dạng tam giác ABC và AB mũ 2 = Hb . BC
b/tính BC, ah
c/tia phân giác góc ACB cắt ah tại I và cắt AB tại D Chứng minh CB.CI=CA.CDCD
cho tam giác abc đường cao ah biết ab=20;bh=12;ac=5/3ah . C/m tam giác abh đồng dạng cah , tính góc bac