a: Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Xét tứ giác AHKC có
I là trung điểm chung của AK và HC
=>AHKC là hình bình hành
=>AC//HK
a: Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Xét tứ giác AHKC có
I là trung điểm chung của AK và HC
=>AHKC là hình bình hành
=>AC//HK
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. Từ H kẻ HM vuông góc với AB tại H, HN vuông góc với AC tại N.
a. Chứng minh tứ giác AMHN là hình chữ nhật.
b. Gọi I là trung điểm HC, vẽ K đối xứng với A qua I. Chứng minh AC song song với HK.
c. Chứng minh AK = MC.
làm hộ mik câu c nhé
nhanh hộ mik nhé
Cho tam giác ABC vuông tại A ( AB<AC, đường cao AH), kẻ HM vuông góc AB, HN vuông góc AC.
a) Chứng minh: tứ giác AMHN là hình chữ nhật.
b) Gọi I là trung điểm HC, K đối xứng A qua I. Chứng minh: AC//HK.
c) Chứng minh: tứ giác NCKM là hình thang cân.
d) MN cắt AH tại O, CO cắt AK tại D. Chứng minh: AK = 3 lần
cho tam giác abc vuông tại a(ab<ac), đường cao ah. kẻ hm vuông góc với ab tại m, hn vuông góc với ac tại n. i là trung điểm hc. k đối xứng với a qua i. câu a)cmr ac//hk, câu b)chứng minh rằng tứ giác mnck là hình thang cân, câu c) cho mn cắt ah tại o, co cắt ak tại d, chứng minh rằng ak=3ad
Cho tam giác ABC vuông tại A (AB>AC) có AH là đường cao. Kẻ HM vuông góc AB tại M, kẻ HN vuông góc AC tại N.
a) Chứng minh: tứ giác AMHN là hình chữ nhật.
b) Gọi K là chung điểm của BC, qua K kẻ đường vuông góc với BC cắt AC tại E. Gọi F là điểm đối xứng với E qua K. Chứng minh: tứ giác BECF là hình thoi.
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. Từ H kẻ HM vuông góc với AB tại H, HN vuông góc với AC tại N. Gọi I là trung điểm HC, vẽ K đối xứng với A qua I. a,chứng minh AK = MC. b, gọi O là giao điểm của AH và MN , D là giao điểm của AK và CO . từ I kẻ IE // CK(E thuộc AC). chứng minh 3 điểm H,D,E thẳng hàng
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH Từ H kẻ HM vuông góc AB HK vuông góc AC (M trên AB,K trên AC
a) chứng minh AH=MK
b)Gọi D và E lần lượt là các điểm đối xứng của H qua AB và A Chứng minh D đối xứng với E qua A
c) chứng minh BD// CE
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.
a. Chứng minh tứ giác ABDC là hình chữ nhật.
b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.
c. Chứng minh tứ giác AEKC là hình bình hành.
d. Tìm điều kiện để hình thoi AKBE là hình vuông.
Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.
a. Chứng minh: M và E đối xứng nhau qua AB.
b. Chứng minh: AMBE là hình thoi.
c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM
Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH
Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao. Từ H kẻ HN vuông góc với AC ( N thuộc AC). Kẻ HM vuông góc với AB ( M thuộc AB)
a) Chứng minh tứ giác AMHN là hình chữ nhật
b) Gọi E là điểm đối xứng với H qua N. Chứng minh tứ giác AMNE là hình bình hành.
c) CMR:\(\frac{EN.AC+AN.AB}{2}\)
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC) a) Chứng minh tứ giác ADHE là hình chữ nhật. b) Gọi I là trung điểm của đoạn thẳng HC. Gọi K là điểm đối xứng với điểm A qua điểm I. Chứng minh rằng AC // HK. c) Chứng minh tứ giác DECK là hình thang cân. d) Gọi O là giao điểm của DE và AH; Gọi M là giao điểm của AI và CO. Chứng minh AM = 1/3 AK
Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Từ H kẻ HM vuông góc với AB ( M thuộc AB ). Kẻ HN vuông góc AC ( N thuộc AC ). Gọi I là trung điểm của HC, lấy K trên tia AI sao cho I là trung điểm của AK
a) Chứng minh AC // HK
b) Chứng minh MNCK là hình thang cân
c) MN cắt AH tại O, CO cắt AK tại D. Chứng minh AK = 3AD