Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trân Bảo

Bài 1: Cho 🔺ABC cân tại A có AM là trung tuyến. Gọi I là trung điểm của AC, K là điểm đối xứng của M qua I.

a. Chứng minh: MIAB là hình thang

b. Chứng minh: AMCK là hình chữ nhật

c. Chứng minh ABMK là hình bình hành 

Bài 2: Cho 🔺BMN vuông tại M. Gọi P,Q lần lượt là trung điểm của BM,BN

a. Tính độ dài MN, biết PQ = 4cm
b. Gọi D là điểm đối xứng của M qua Q, chứng minh tứ giác MBDN là hình chữ nhật

Nguyễn Lê Phước Thịnh
18 tháng 10 2021 lúc 22:15

Bài 1:

a: Xét ΔABC có 

M là trung điểm của BC

I là trung điểm của AC

Do đó: MI là đường trung bình của ΔABC

Suy ra: MI//AC và \(MI=\dfrac{AC}{2}\)

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

Xét tứ giác AMCK có 

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật


Các câu hỏi tương tự
Đặng Minh tuấn.38
Xem chi tiết
Đặng Minh tuấn.38
Xem chi tiết
Việt Hoàng
Xem chi tiết
Đức Nguyễn
Xem chi tiết
hoa tran
Xem chi tiết
Phạm Ngọc Gia Huy
Xem chi tiết
Bùi Thị Thảo
Xem chi tiết
Nguyễn Ân
Xem chi tiết
Nguyễn Mai Anh
Xem chi tiết