a: Xét ΔABK vuông tại K và ΔCBA vuông tại A có
góc B chung
=>ΔABK đồng dạng với ΔCBA
=>BA/BC=BK/BA
=>BA^2=BK*BC
a: Xét ΔABK vuông tại K và ΔCBA vuông tại A có
góc B chung
=>ΔABK đồng dạng với ΔCBA
=>BA/BC=BK/BA
=>BA^2=BK*BC
Cho tam giác ABC vuông tại A, đường cao AH. Từ H kẻ HI vuông góc AB tại I, HK vuông góc AC tại K.
a) CM: AKHI là HCN?
b) CM: Tam giác AIK đồng dạng tam giác ACB. Suy ra AI.AB=AK.AC
c) CM: góc ABK = góc ACI
Giúp mình nha! (Nhất là câu b, và câu c).
----Fairy Tail----
Cho tam giác ABC vuông tại A, đường cao AH ( H thuộc BC)
a) C/m: Tam giác ABC đồng dạng tam giác HBA;
tam giác ABC đồng dạng tam giác HAC
rồi suy ra: AB^2 = BH.BC và AC^2 = CH.BC
b)C/m: tam giác HDA đồng dạng tam giác HAC
rồi suy ra: AH^2 = BH.CH
Cho hình tam giác ABC có ba góc nhọn (AB<AC). Kẻ đường cao BE và đường cao CF cắt nhau ở H. Gọi K là giao điểm của AH và BC.
a, CM tam giác ABK đông dạng với tam giác ABF, từ đó suy ra BA.BF=BK.BC
b, CM tam giác BKF đồng dạng tam giác BAC
c, Gọi O và I lần lượt là trung điểm của BC và AH. Tia EF cắt AK và BC lần lượt tại N và D. CM: ON vuông góc DI
P/S: Mình cần gấp ạ !!!
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Biết BH=4cm,CH=9cm Chứng minh tam giác ABH đồng dạng với tam giác CBA từ đó suy ra AB^2=BH.BC Tính AB,AC đường phân giác BD cắt AH tại E(D thuộc AC) . Tính SEBH/SDBA và chứng minh EA/EH=DC/DA
cho tam giác ABC vuông tại A (AB<AC), đường cao AH a, CM tgiac ABC đồng dạng với tgiac HBA từ đó suy ra AB.AB=BC.BH, AB.AC=BC.AH b, CM tgiac ABC đồng dạng với tgiac HAC từ đó suy ra AC.AC=BC.CH c, tia phân giác của góc ABC cắt AH tại K, cắt AC tại I. CM: tgiac ABK đồng dạng tgiac CBI d, CM AI/IC=KH/AK
Cho tam giác ABC vuông tại A. Kẻ đường cao AE , E thuộc BC.
Chứng minh tam giác ABE đồng dạng với tam giác CBA. từ đó suy ra AB^2 = BE.BC.
Cho BC = 5 cm, AB = 3 cm. Kẻ phân giác BD, D thuộc AC. Kẻ DH vuông góc với BC, H thuôc BC. tính tỉ số AD/CD. Chứng minh HE/HC = BA/BC.
Gọi O là giao điểm của AH với BD. Qua B kẻ đường thẳng song song với AH cắt CO, cắt CA tại M, N. Chứng minh M là trung diểm của BN.
Cho tam giác ABC vuông tại A có đường cao AH .Kẻ HD vuông góc AC tại D a) Chứng minh: Tam giác ABH đồng dạng tam giác CBA, tam giác DAH đồng dạng tam giác HAC b) Chứng minh AD.AC=BH.HC c) Gọi O là trung điểm AB, OC cắt HD tại I Chứng minh :HI=ID d) Gọi K là giao điểm của AH và OC. Chứng minh B,K,D thẳng hàng
Cho tam giác nhọn ABC các đường cao BD CE cắt nhau tại H chứng minh rằng. a, tam giác AEC đồng dạng tam giác ADB. b, kẻ HK vuông góc với BC (k thuộc BC) chứng minh BH.BD=BK.BC
Cho tam giác ABC vuông tại A (AB<AC) đường cao AH. Từ B kẻ tia Bx vuông góc vơid AB tia Bx cắt AH tại K
a, tứ giác ABKC là hình gì?
b, chứng minh tam giác ABK đồng dạng với CHA
c, chứng minh AH^2 =HB×AC