`B= |2x+1| + |2y-1| +2`
Do \(\left\{{}\begin{matrix}\left|2x+1\right|\ge0\\\left|2y-1\right|\ge0\end{matrix}\right.\) `∀x => |2x + 1| + |2y-1| >= 0 ∀x`
`=> |2x + 1| + |2y-1| +2 >= 2 ∀x`
Hay `B >=2 `
Dấu = có khi:
\(\left\{{}\begin{matrix}2x+1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy `B_(min) = 2` khi `x = -1/2; y = 1/2`