\(B=\dfrac{1}{4}\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+\dfrac{4}{9\times13}+...+\dfrac{4}{125\times129}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{125}-\dfrac{1}{129}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{129}\right)=\dfrac{1}{4}\times\dfrac{128}{129}=\dfrac{32}{129}\)