A=\(\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
B=\(\frac{1}{\sqrt{2016}+\sqrt{2015}}\)
=> A<B
A=\(\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
B=\(\frac{1}{\sqrt{2016}+\sqrt{2015}}\)
=> A<B
So sánh các số sau:
a.\(\sqrt{2015}+\sqrt{2018}\) và \(\sqrt{2016}+\sqrt{2017}\)
So sánh các số sau:
a.\(\sqrt{2015}+\sqrt{2018}\) và \(\sqrt{2016}+\sqrt{2017}\)
b.\(\sqrt{2013}+\sqrt{2011}\)và \(2\sqrt{2012}\)
Cho A=\(\sqrt{2015}+\sqrt{2016}+\sqrt{2017}\)và B=\(\sqrt{2012}+\sqrt{2014}+\sqrt{2022}\)So sánh A và B
Ai giỏi toán giup em với
Không tính giá trị hãy so sánh:
\(A=\sqrt{2018+\sqrt{2017}}-\sqrt{2017+\sqrt{2017}}\)
và \(B=\sqrt{2017+\sqrt{2016}}-\sqrt{2016+\sqrt{2016}}\)
So sánh \(\sqrt{2018}-\sqrt{2017}\)và \(\sqrt{2016}-\sqrt{2015}\)
So sánh:
a) x=\(\sqrt{2017}-\sqrt{2018}\)và y=\(\sqrt{2016}-\sqrt{2017}\)
b) x=\(\sqrt{2019}+\sqrt{2017}\)và y=\(2\sqrt{2018}\)
Ai giỏi toán giải giúp em bài này với
Không tính giá trị hãy so sánh
A = \(\sqrt{2018+\sqrt{2017}}-\sqrt{2017+\sqrt{2017}}\)
và B = \(\sqrt{2017+\sqrt{2016}}-\sqrt{2016+\sqrt{2016}}\)
So sánh A=\(\sqrt[3]{2015}+\sqrt[3]{2017}\)và B=\(2\sqrt[3]{2016}\)
Không dùng máy tính, hãy so sánh \(\sqrt{2017}-\sqrt{2016}\) và \(\sqrt{2016}-\sqrt{2015}\)