53:
\(f\left(x\right)=3\left[\left(sin^2x+cos^2x\right)^2-2\cdot sin^2x\cdot cos^2x\right]-2\left[\left(sin^2x+cos^2x\right)^3-3\cdot sin^2x\cdot cos^2x\left(sin^2x+cos^2x\right)\right]\)
\(=3\left[1-2\cdot sin^2x\cdot cos^2x\right]-2\cdot\left[1-3sin^2x\cdot cos^2x\right]\)
\(=3-6\cdot sin^2x\cdot cos^2x-2+6\cdot sin^2x\cdot cos^2x\)
=1
=>A
54:
\(f\left(x\right)=cos^2x\left(cos^2x+sin^2x\right)+sin^2x\)
=cos^2x+sin^2x
=1
=>A
55:
\(A\left(x\right)=tan^2x\cdot sin^2x-tan^2x+sin^2x\)
\(=tan^2x\left(sin^2x-1\right)+sin^2x\)
\(=-tan^2x\cdot cos^2x+sin^2x\)
\(=-sin^2x+sin^2x=0\)