Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Mai

Giải giúp mk phần tự luận với ạ

Nguyễn Việt Lâm
8 tháng 4 2022 lúc 18:42

1. Đề lỗi

2.

Đường tròn (C) tâm \(I\left(1;-1\right)\) bán kính \(R=\sqrt{1^2+\left(-1\right)^2-\left(-7\right)}=3\)

a.

\(d\left(I;D\right)=\dfrac{\left|1-1-4\right|}{\sqrt{1^2+1^2}}=2\sqrt{2}< R\)

\(\Rightarrow D\) cắt (C) tại 2 điểm phân biệt

b.

Gọi H là trung điểm MN \(\Rightarrow IH\perp MN\Rightarrow IH=d\left(I;D\right)=2\sqrt{2}\)

ÁP dụng định lý Pitago trong tam giác vuông IHM:

\(HM=\sqrt{IM^2-IH^2}=\sqrt{R^2-IH^2}=\sqrt{9-8}=1\)

\(\Rightarrow MN=2MH=2\)

\(S_{IMN}=\dfrac{1}{2}IH.MN=2\sqrt{2}\)

Nguyễn Việt Lâm
8 tháng 4 2022 lúc 18:53

3.

Đường tròn (C) tâm \(I\left(2;3\right)\) bán kính \(R=\sqrt{2}\)

Đường còn (C') tâm \(I'\left(1;2\right)\) bán kính \(R'=2\sqrt{2}\)

Gọi tiếp tuyến chung của (C) và (C') là (d) có pt: \(ax+by+c=0\) với \(a^2+b^2\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}d\left(I;\left(d\right)\right)=R\\d\left(I';\left(d\right)\right)=R'\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{\left|2a+3b+c\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\left(1\right)\\\dfrac{\left|a+2b+c\right|}{\sqrt{a^2+b^2}}=2\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left|a+2b+c\right|=2\left|2a+3b+c\right|\)

\(\Rightarrow\left[{}\begin{matrix}4a+6b+2c=a+2b+c\\4a+6b+2c=-a-2b-c\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3a+4b+c=0\\5a+8b+3c=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}c=-3a-4b\\c=-\dfrac{5a+8b}{3}\end{matrix}\right.\)

Thế vào (1):

\(\Rightarrow\left[{}\begin{matrix}\dfrac{\left|2a+3b-3a-4b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\\\dfrac{\left|2a+3b-\dfrac{5a+8b}{3}\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left|a+b\right|=\sqrt{2\left(a^2+b^2\right)}\\\left|a+b\right|=3\sqrt{2\left(a^2+b^2\right)}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a^2+2ab+b^2=2a^2+2b^2\\a^2+2ab+b^2=18a^2+18b^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(a-b\right)^2=0\\17a^2-2ab+17b^2=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow a=b\) \(\Rightarrow c=-3a-4b=-7a\)

Thế vào pt (d):

\(ax+ay-7a=0\Leftrightarrow x+y-7=0\)

Nguyễn Việt Lâm
8 tháng 4 2022 lúc 19:01

4.

ĐKXĐ: \(x\ge-\dfrac{3}{2}\)

\(4\left(x+1\right)^2< \left(x+10\right)\left(1-\sqrt{3+2x}\right)^2\)

\(\Leftrightarrow4\left(x+1\right)^2< \left(x+10\right)\left(\dfrac{-2-2x}{1+\sqrt{3+2x}}\right)^2\)

\(\Leftrightarrow4\left(x+1\right)^2< \dfrac{\left(x+10\right)4\left(x+1\right)^2}{\left(1+\sqrt{3+2x}\right)^2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{x+10}{\left(1+\sqrt{3+2x}\right)^2}>1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x+10>1+3+2x+2\sqrt{3+2x}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\6-x>2\sqrt{3+2x}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\6-x>0\\\left(6-x\right)^2>4\left(3+2x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x< 6\\x^2-20x+24>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x< 10-2\sqrt{19}\end{matrix}\right.\)

Kết hợp ĐKXĐ ta được nghiệm của BPT là: 

\(\left[{}\begin{matrix}-\dfrac{3}{2}\le x< -1\\-1< x< 10-2\sqrt{19}\end{matrix}\right.\)


Các câu hỏi tương tự
layla Nguyễn
Xem chi tiết
layla Nguyễn
Xem chi tiết
Duyên Lê
Xem chi tiết
lê Lưu Ly
Xem chi tiết
Ng Văn Linhh
Xem chi tiết
sakura
Xem chi tiết
Nguyễn Thành Nam
Xem chi tiết
.thuyanh
Xem chi tiết
Con Ga
Xem chi tiết