\(A=\left(\dfrac{2}{2x-\sqrt{x}}-\dfrac{1}{1-2\sqrt{x}}\right):\left(\dfrac{3\sqrt{x}+1}{4x-4\sqrt{x}+1}-\dfrac{2\sqrt{x}+1}{4x-1}\right)\left(x>0;x\ne\dfrac{1}{4}\right)\)
\(A=\left[\dfrac{2}{\sqrt{x}\left(2\sqrt{x}-1\right)}+\dfrac{1}{2\sqrt{x}-1}\right]:\left[\dfrac{3\sqrt{x}+1}{\left(2\sqrt{x}-1\right)^2}-\dfrac{2\sqrt{x}+1}{\left(2\sqrt{x}\right)^2-1^2}\right]\)
\(A=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(2\sqrt{x}-1\right)}:\left[\dfrac{\left(3\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)^2\left(2\sqrt{x}+1\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)^2\left(2\sqrt{x}+1\right)}\right]\)
\(A=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(2\sqrt{x}-1\right)}:\dfrac{6x+3\sqrt{x}+2\sqrt{x}+1-4x+1}{\left(2\sqrt{x}-1\right)^2\left(2\sqrt{x}+1\right)}\)
\(A=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(2\sqrt{x}-1\right)}:\dfrac{2x+5\sqrt{x}+2}{\left(2\sqrt{x}-1\right)^2\left(2\sqrt{x}+1\right)}\)
\(A=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{\left(2\sqrt{x}-1\right)^2\left(2\sqrt{x}+1\right)}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)
\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}}\)