a/ Ta có: \(AB=AC\Leftrightarrow AD+BD=AE+CE\). Mà BD = CE (gt)
\(\Rightarrow AD=AE\)
Vậy: △ADE cân tại A (đpcm)
==========
b/ Ta có: △ADE cân tại A \(\Rightarrow\hat{ADE}=\dfrac{180\text{ }\text{˚}-\hat{A}}{2}\)
△ABC cân tại A \(\Rightarrow\hat{ABC}=\dfrac{180\text{˚}-\hat{A}}{2}\)
- Mà 2 góc này ở vị trí đồng vị
Vậy: DE // BC (đpcm)
==========
c/ DE // BC (cmt) ⇒ Tứ giác BDEC là hình thang
- BDEC có \(\hat{B}=\hat{C}\)
Vậy:Tứ giác BDEC là hình thang cân (đpcm)
Chúc bạn học tốt!
a: Xét ΔADE có AD=AE
nên ΔADE cân tại A
b: Xét ΔABC có
\(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
nên DE//BC