Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huy Nguyen

Ai giúp mình bài 6,7 vs

Nguyễn Việt Lâm
17 tháng 4 2022 lúc 15:05

6.

Do \(AA'\perp\left(ABCD\right)\) (t/c hình hộp chữ nhật)

Mà \(AA'\in\left(ACC'A'\right)\)

\(\Rightarrow\left(ACC'A'\right)\perp\left(ABCD\right)\Rightarrow\) góc giữa (ACC'A') avf (ABCD) bằng 90 độ

b.

Từ H kẻ AH vuông góc BD (H thuộc BD)

Do \(AA'\perp\left(ABCD\right)\Rightarrow AA'\perp BD\)

\(\Rightarrow BD\perp\left(A'AH\right)\)

\(\Rightarrow\left\{{}\begin{matrix}BD\perp AH\\BD\perp A'H\end{matrix}\right.\)

Mà \(BD=\left(A'BD\right)\cap\left(ABCD\right)\Rightarrow\widehat{AHA'}\) là góc giữa (A'BD) và (ABCD)

\(AH=\dfrac{AB.AD}{\sqrt{AB^2+AD^2}}=\dfrac{bc}{\sqrt{b^2+c^2}}\)

\(\Rightarrow tan\widehat{AHA'}=\dfrac{AA'}{AH}=\dfrac{a\sqrt{b^2+c^2}}{bc}\)

Nguyễn Việt Lâm
17 tháng 4 2022 lúc 15:13

7.

Kẻ \(AI\perp CM\Rightarrow\widehat{IAM}=\widehat{BCM}\) (góc có cạnh tương ứng vuông góc)

\(CM=\sqrt{BC^2+BM^2}=\sqrt{BC^2+\left(\dfrac{AB}{2}\right)^2}=2a\)

\(\Rightarrow AI=AM.cos\widehat{IAM}=\dfrac{AB}{2}.cos\widehat{BCM}=\dfrac{AB}{2}.\dfrac{BC}{CM}=\dfrac{a\sqrt{3}}{2}\)

b.

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp CI\\CI\perp AI\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CI\perp\left(SAI\right)\Rightarrow\left\{{}\begin{matrix}CI\perp SI\\CI\perp AI\end{matrix}\right.\)

Mà \(CI=\left(SMC\right)\cap\left(ABC\right)\Rightarrow\widehat{SIA}\) là góc giữa (SMC) và (ABC)

\(tan\widehat{SIA}=\dfrac{SA}{AI}=\dfrac{4\sqrt{3}}{3}\Rightarrow\widehat{SIA}\approx66^035'\)

Nguyễn Việt Lâm
17 tháng 4 2022 lúc 15:29

undefined


Các câu hỏi tương tự
ngoclanne
Xem chi tiết
Huy Nguyen
Xem chi tiết
Ngọc Ánh Phạm
Xem chi tiết
Huy Nguyen
Xem chi tiết
Li13
Xem chi tiết
Huy Nguyen
Xem chi tiết
Huy Nguyen
Xem chi tiết
Giang Đặng
Xem chi tiết
Huy Nguyen
Xem chi tiết