-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!
c/ △ABC có: BD, CE là các đường cao và BD, CE cắt nhau tại H.
\(\Rightarrow\)AH là đường cao mà AH cắt BC tại Q \(\Rightarrow\)AH⊥BC tại Q.
△BEC∼△BQA (g-g) \(\Rightarrow\dfrac{BE}{BQ}=\dfrac{BC}{BA}\Rightarrow\dfrac{BE}{BC}=\dfrac{BQ}{BA}\)
\(\Rightarrow\)△BEQ∼△BCA (c-g-c) \(\Rightarrow\)\(\widehat{BQE}=\widehat{BAC}\) (1)
△BDC∼△AQC (g-g) \(\Rightarrow\dfrac{BC}{AC}=\dfrac{DC}{QC}\Rightarrow\dfrac{BC}{DC}=\dfrac{AC}{QC}\)
\(\Rightarrow\)△DQC∼△BCA (c-g-c) \(\Rightarrow\)\(\widehat{DQC}=\widehat{BAC}\) (2)
-Từ (1) và (2) suy ra: \(\widehat{BQE}=\widehat{DQC}\Rightarrow\widehat{AQE}=\widehat{AQD}\)
\(\Rightarrow\)QA là tia p/g của góc EQD