\(a,=\dfrac{x^3+2x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}=\dfrac{x^3+2x+2x-2-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^3+3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^3+3}{\left(x^2+x+1\right)}\)
b,=\(\dfrac{x+1}{x+3}+\dfrac{x-1}{x-3}+\dfrac{2x-2x^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+1\right)\left(x-3\right)+\left(x-1\right)\left(x+3\right)+2x-2x^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+x-3x-3+x^2-x+3x-3+2x-2x^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+2x-6}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+2}{x+3}\)
\(c,=\dfrac{2}{x-1}-\dfrac{7-x}{3\left(x-1\right)}=\dfrac{x-1}{3\left(x-1\right)}\)