a: \(\frac{1}{x^2-4}+\frac{2x}{x+2}\)
\(=\frac{1}{\left(x-2\right)\left(x+2\right)}+\frac{2x}{x+2}\)
\(=\frac{1+2x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2x^2-4x+1}{x^2-4}\)
b: \(\frac{18}{\left(x-3\right)\left(x^2-9\right)}-\frac{3}{x^2-6x+9}-\frac{x}{x^2-9}\)
\(=\frac{18}{\left(x-3\right)^2\cdot\left(x+3\right)}-\frac{3}{\left(x-3\right)^2}-\frac{x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{18-3\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)^2\cdot\left(x+3\right)}=\frac{18-3x-9-x^2+3x}{\left(x-3\right)^2\cdot\left(x+3\right)}\)
\(=\frac{-x^2+9}{\left(x-3\right)^2\cdot\left(x+3\right)}=\frac{-\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2\cdot\left(x+3\right)}=\frac{-1}{x-3}\)















