a: Xét tứ giác AKHB có
\(\widehat{AKB}=\widehat{AHB}=90^0\)
=>AKHB là tứ giác nội tiếp đường tròn đường kính AB
=>A,K,H,B cùng thuộc đường tròn đường kính AB
b1: AC=5cm
mà AB=AC
nên AB=5cm
ΔAKB vuông tại K
=>\(AK^2+KB^2=AB^2\)
=>\(KB^2=5^2-4^2=9\)
=>\(KB=\sqrt{9}=3\left(cm\right)\)
Xét ΔAKB vuông tại K có KI là đường cao
nên \(AI\cdot AB=AK^2\)
=>\(AI\cdot5=4^2=16\)
=>AI=16/5=3,2(cm)
b2: Gọi O là trung điểm của AB
Theo đề, ta có: KF\(\perp\)AB tại I
=>OI\(\perp\)FK tại I
Ta có: ΔOKF cân tại O
mà OI là đường cao
nên I là trung điểm của FK
Xét ΔAFK có
AI là đường cao
AI là đường trung tuyến
Do đó: ΔAFK cân tại A