cho đtron (O; R) đkinh B, dcung MN vuông góc với AB tại H ( H nằm giữa O và B). Trên tia đối của tia NM lấy C sao cho AC cắt (O) tại điểm K (K khác A). 2 dây MN và BK cắt nhau tại E. AI cắt KH tại P. C/m
a, 4 điểm A,H,E,K cung thuộc 1 đtron
b, Kéo dài AE cắt (O) tại I. C/m KAE = KBC
c, AE.AI + BE.BK = 4R2
d, HE là tia pgiac của KHI và PE.AI = EI.AP
Cho (O) có đg kính AB ⊥MN tại H (H nằm giữa B và O). trên tia MN lấy C nằm ngoài O sao cho AC cắt (O) tại K (K khác A), 2 dây MN và BK cắt nhau tại E.
a) tg AHEK nội tiếp
b) CH.CE= CM.CN
c) qua điểm N, kẻ đg thẳng (d) ⊥ AC. cắt MK tại F. C/m: △CNF cân
giúp mk vs mk cần gấp lắm
Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF
Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.
Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.
Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.
Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK.
giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha
cho đường tròn tâm o bán kính AB vẽ dây CD vuông góc với AB tại H (H nằm giữa O Và B) tia CD lấy E nằm ngoài đt EB cắt O tại F AF cắt DC tại K a) BFKH là tứ giác nội tiếp b) AB.BH=EB.BF
1.
Cho đường tròn tâm O đường kính AB. Dây CD cắt đường kính AB tại I. Gọi H,K là chân các đường vuông góc kẻ từ A,B đến CD. Chứng minh rằng CH=DK
2.
Cho tam giác ABC nhọn nội tiếp đường tròn (O) các đường cao AD, BE, CF cắt nhau tại H đường thẳng EF cắt (O) tại M,N ( F nằm giữa M và E ) . Chứng minh rằng AM = AN
3.
Cho (O) và dây AB , gọi E,F là hai điểm phân biệt bất kỳ trên dây cung AB . Gọi M là điểm chính giữa cung AB. Các tia ME, MF cắt (O) tại P,Q. Chứng minh rằng : 4 điểm E,F,Q,P cùng thuộc một đường tròn.
CÁC BẠN LÀM ƠN GIÚP MÌNH VỚI! THỰC SỰ MÌNH RẤT CẦN GẤP... CẢM ƠN CÁC BẠN RẤT NHIỀU ><
1, Cho hình chữ nhật ABCD , AB<AD , lấy điểm E thuộc AD , F và K thuộc CD sao cho F nằm giữa D và K và DF =CK. Vẽ đường thẳng vuông góc với EK tại K cắt BC tại M. Vẽ I là trung điểm E và M , IH vuông góc với CD
a, c/m H là trung điểm C và D
b, c/m EFM = 90 độ
Cho đường tròn tâm O đường kính MN, dây cung AB vuông góc với MN tại điểm I nằm giữa O, N. Gọi K là một điểm thuộc dây AB nằm giữa A, I. Các tia MK, NK cắt đường tròn tâm O theo thứ tự tại C,D. Gọi E, F, H lần lượt là hình chiếu của C trên các đường thẳng AD, AB, BD. Chứng minh rằng:
1) F là trung điểm của EH
2) Hai đường thẳng DC và DI đối xứng nhau qua đường thẳng DN.
Giúp mình với, cảm ơn mn nhiều <3
Cho đường tròn (O;R) có đường kính AB. Từ điểm C nằm ngoài (O) kẻ cát tuyến CNM vuông góc với AB tại H (H nằm giữa O và B); AC cắt đường tròn (O;R) tại điểm K khác A, hai dây MN và BK cắt nhau ở E
a) CM: tứ giác AHEK nội tiếp đường tròn
b) Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. Chứng minh: tam giác NKF cân
Câu 3 (3,0 điểm). Cho đường tròn (O;R) đường kính AB. Điểm C thuộc (O) sao cho CA<CB.Từ C kẻ đường thẳng vuông góc với AB cắt AB tại H (H nằm giữa O và A), cắt đường tròn (O) tại N. Từ trung điểm M của CH vẽ dây EF vuông OC tại K ( E thuộc cung AC nhỏ) . Trên (O) lấy điểm D sao cho
EFD = 90.Chứng minh rằng:
a) Các tứ giác MHOK và CNDF là tứ giác nội tiếp.
b) CM.CH=CK. CO = (CF)^2/2
c) AB là tiếp tuyến của (C;CE).
Mình ko vẽ được hình vì thấy đề hơi sai sai, mong mọi người giúp ạ