Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ArcherJumble

ai giải giùm em bài này với em cảm ơn ạ.

undefined

Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 14:53

b: Để hai đường thẳng song song thì m-4=1

hay m=5

Nguyễn Hoàng Minh
19 tháng 12 2021 lúc 14:58

\(b,\Leftrightarrow\left\{{}\begin{matrix}m-4=1\\m-1\ne3\end{matrix}\right.\Leftrightarrow m=5\\ c,\Leftrightarrow A\left(3;0\right)\in\left(d_2\right)\Leftrightarrow3m-12+m-1=0\Leftrightarrow m=\dfrac{13}{4}\\ d,\text{PT giao Ox và Oy: }\left\{{}\begin{matrix}y=0\Leftrightarrow x=\dfrac{1-m}{m-4}\Leftrightarrow OA=\left|\dfrac{m-1}{m-4}\right|\\x=0\Leftrightarrow y=m-1\Leftrightarrow OB=\left|m-1\right|\end{matrix}\right.\\ \text{Kẻ }OH\perp\left(d\right)\Leftrightarrow\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-4\right)^2}{\left(m-1\right)^2}+\dfrac{1}{\left(m-1\right)^2}\\ \text{Đặt }OH^2=t\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-8m+17}{m^2-2m+1}\\ \Leftrightarrow m^2t-8mt+17t=m^2-2m+1\\ \Leftrightarrow m^2\left(t-1\right)-2m\left(4t-1\right)+17t-1=0\\ \Leftrightarrow\Delta'=\left(4t-1\right)^2-\left(t-1\right)\left(17t-1\right)\ge0\\ \Leftrightarrow-t^2+10t\ge0\Leftrightarrow0\le t\le10\\ \Leftrightarrow OH_{max}=\sqrt{10}\Leftrightarrow\dfrac{m^2-2m+1}{m^2-8m+17}=10\Leftrightarrow...\)


Các câu hỏi tương tự
Nguyen Viet Hung
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
Hoàng Kiều Quỳnh Anh
Xem chi tiết
Hoàng Kiều Quỳnh Anh
Xem chi tiết
Sayu
Xem chi tiết
ArcherJumble
Xem chi tiết
Tran Ngoc Anh
Xem chi tiết