Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mastumi Yuko

Ai bik giả bài này giúp mik với

Shinichi Kudo
30 tháng 5 2022 lúc 20:43

\(A=\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2015}\)

\(A=\dfrac{2015}{2016}-1+\dfrac{2016}{2017}-1+\dfrac{2017}{2018}-1+\dfrac{2018}{2015}-1+4\)

\(A=-\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}+\dfrac{3}{2015}+4\)

\(A=\left(\dfrac{1}{2015}-\dfrac{1}{2016}\right)+\left(\dfrac{1}{2015}-\dfrac{1}{2017}\right)+\left(\dfrac{1}{2015}-\dfrac{1}{2018}\right)+4\)

Có: \(\dfrac{1}{2015}-\dfrac{1}{2016}>0\)  ;   \(\dfrac{1}{2015}-\dfrac{1}{2017}>0\)   ;   \(\dfrac{1}{2015}-\dfrac{1}{2018}>0\) 

=> \(A=\left(\dfrac{1}{2015}-\dfrac{1}{2016}\right)+\left(\dfrac{1}{2015}-\dfrac{1}{2017}\right)+\left(\dfrac{1}{2015}-\dfrac{1}{2018}\right)+4>4\)

hay A>4

Minh acc 3
30 tháng 5 2022 lúc 20:38

tham khảo 

A=2015/2016+2016/2017+2017/2018+2018/2015

A=2015/2016+2016/2017+2017/2018+2018/2015

A=2016−1/2016+2017−1/2017+2018−1/2018+2015+3/2015

A=2016-12016+2017-12017+2018-12018+2015+32015

A=1−1/2016+1−1/2017+1−1/2018+1+3/2015

A=1-1/2016+1-1/2017+1-1/2018+1+3/2015

A=4+(1/2015−1/2016)+(1/2015−1/2017)+(1/2015−1/2018)

A=4+(1/2015-1/2016)+(1/2015-1/2017)+(1/2015-1/2018)

A=4+2016−2015/2015.2016+2017−2015/2015.2017+2018−2015/2015.2018

A=4+2016-20152015.2016+2017-20152015.2017+2018-20152015.2018

A=4+1/2015.2016+2/2015.2017+3/2015.2018

A=4+1/2015.2016+2/2015.2017+3/2015.2018

A>4+0+0+0=4

✨Linz✨
30 tháng 5 2022 lúc 20:42

A = 2015/2016 + 2016/2017 + 2017/2018 + 2018/2015

A = 2015/2016 + 2016/2017 + 2017/2018 + 2018/2015

A = 2016 − 1/2016 + 2017 − 1/2017 + 2018 − 1/2018 + 2015 + 3/2015

A = 2016 - 12016 + 2017 - 12017 + 2018 - 12018 + 2015 + 32015

A = 1 − 1/2016 + 1 − 1/2017 + 1 − 1/2018 + 1 + 3/2015

A = 1 - 1/2016 + 1 - 1/2017 + 1 - 1/2018 + 1 + 3/2015

A = 4 + (1/2015 − 1/2016) + (1/2015 − 1/2017) + (1/2015 − 1/2018)

A = 4+(1/2015-1/2016)+(1/2015-1/2017)+(1/2015-1/2018)

A = 4 + 2016 − 2015/2015 . 2016 +2017 − 2015/2015 . 2017 + 2018 − 2015/2015 . 2018

A = 4 + 2016 - 2015 . 2016 + 2017 - 2015 . 2017 + 2018 - 2015 . 2018

A = 4 + 1/2015 . 2016 + 2/2015 . 2017 + 3/2015 . 2018

A > 4 + 0 + 0 + 0 = 4

Cấn Thị Vân Anh
30 tháng 5 2022 lúc 20:43

\(A=\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2015}\)

\(A=\dfrac{2016-1}{2016}+\dfrac{2017-1}{2017}+\dfrac{2018-1}{2018}+\dfrac{2015+1+1+1}{2015}\)

\(A=1-\dfrac{1}{2016}+1-\dfrac{1}{2017}+1-\dfrac{1}{2018}+1+\dfrac{1}{2015}+\dfrac{1}{2015}+\dfrac{1}{2015}\)

\(A=4+\left(\dfrac{1}{2015}-\dfrac{1}{2016}\right)+\left(\dfrac{1}{2015}-\dfrac{1}{2017}\right)+\left(\dfrac{1}{2015}-\dfrac{1}{2018}\right)\)

Vì: \(\dfrac{1}{2015}>\dfrac{1}{2016}>\dfrac{1}{2017}>\dfrac{1}{2018}\)

   \(\Rightarrow\dfrac{1}{2015}-\dfrac{1}{2016}>0;\dfrac{1}{2015}-\dfrac{1}{2017}>0;\dfrac{1}{2015}-\dfrac{1}{2018}>0\)

\(\Rightarrow A>4\) (đpcm)


Các câu hỏi tương tự
Mastumi Yuko
Xem chi tiết
Mastumi Yuko
Xem chi tiết
tran thi quynh hoa
Xem chi tiết
Nguyễn Hà My
Xem chi tiết
Phạm Duy Anh
Xem chi tiết
Thanh
Xem chi tiết
nguyễn trọng bình
Xem chi tiết
Manhmoi
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Kiệt
Xem chi tiết