Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Anh

\(A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

a) vơi điều kiện nào của x thì giá trị biểu thức A xác định

b) rút gọn biểu thức A

c) tim giá trị biểu thức A tại x=1

Thảo Thảo
17 tháng 12 2021 lúc 19:59

a, điều kiện xác định: x2 - 4 ≠ 0    

                           ⇔ x2 ≠ 4

                           ⇔x ≠ 2 và x ≠ -2

b,  A= \(\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

       =\(\dfrac{x^2-x\left(x+2\right)+2\left(x-2\right)}{x^2-4}\)

       = \(\dfrac{x^2-x^2-2x+2x-4}{x^2-4}\)

       = \(\dfrac{x^2-4}{x^2-4}\)

       = 1

c, x=1    ⇒ A= \(\dfrac{1^2}{1^2-4}-\dfrac{1}{1-2}+\dfrac{2}{1+2}\)

                    = \(\dfrac{4}{3}\)

Knight™
17 tháng 12 2021 lúc 20:00

a) Điều kiện xác định:
A\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.⇔\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
b) Rút gọn:
A= \(\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\).

A=  \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\).

A= \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)[do MTC là (x-2)(x+2)].
A=  \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}\)

A= \(\dfrac{x^2-\left(x^2+2x\right)+2x-4}{\left(x-2\right)\left(x+2\right)}\)

A= \(\dfrac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\)

A= \(\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)


Các câu hỏi tương tự
Khánh Linh Đỗ
Xem chi tiết
LanAnh
Xem chi tiết
Tuyết Ly
Xem chi tiết
Hùng Chu
Xem chi tiết
Mộc Miên
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Alicia
Xem chi tiết
My Nguyen Tra
Xem chi tiết
Mina Anh
Xem chi tiết