\(\left(a+b+c\right)^2\)
\(a^2+b^2+c^2+2ab+2bc+2ca\)
(a+b+c)2
=a(a+b+c)+b(a+b+c)+c(a+b+c)
=a2+ab+ac+ab+b2+bc+ca+bc+c2
=a2+b2+c2+2(ab+bc+ca)
Cho dạng tổng quát nè:
(a1+a2+...+an)2=a12+a22+...+an2+2a1a2+2a1a3+...+2a1an+2a2a3+...+2a2an+...+2an-1an
\(\left\{a+b+c\right\}^2\)
\(a^2+b^2+c^2+2ab+2bc+2ca.\)