Cho a,b,c>0 và a+b+c=3.Tìm Max:
\(P=\frac{a^3}{3a-ab-ca+2bc}+\frac{b^3}{3b-bc-ab+2ca}+\frac{c^3}{3c-bc-ca+2ab}+3abc\)
Cho a,b,c >0 và a+b+c=3. Tìm GTLN của biểu thức P=5(ab+bc+ca)-3abc
Cho \(a;b;c\ge0\) thỏa \(a^3+b^3+c^3=3\)
Tìm GTNN của \(B=\dfrac{ab+bc+ca+a^3+b^3+c^3}{5\left(ab+bc+ca\right)+1}\)
Cho các số thực a,b,c \(\ge\)0 thỏa mãn a+b+c=3abc
Tìm GTNN của \(A=\frac{bc}{a^3.\left(c+2b\right)}+\frac{ac}{b^3.\left(a+2c\right)}+\frac{ab}{c^3.\left(b+2a\right)}\)
Cho a+b+c+ab+bc+ca=6 và a,b,c>0. Tìm GTNN của P=\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)
Bài 1: Cho a,b,c >0 và ab+bc+ca=3abc.
Chứng minh: \(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{3}{2}\)
Bài 2: Cho a,b > 0; \(2a+b\ge7.\)
Tìm GTNN của: S=\(a^2-a+3b+\frac{9}{a}+\frac{1}{b}+9\)
Help me!!!
Cho a, b, c > 0 có ab + bc + ca = 1. Tìm GTNN \(P=\dfrac{a^3}{b^2+1}+\dfrac{b^3}{c^2+1}+\dfrac{c^3}{a^2+1}\)
Cho 3 số thực dương a, b, c thoả mãn: ab+bc+ca=3. Tìm giá trị nhỏ nhất của biểu thức: \(A=a^3+b^3+c^3+3abc\)
Cho các số dương \(a,b,c\)thỏa mãn \(a+b+c=3\)tìm GTLN của biểu thức: \(P=\frac{a^3}{3a-ab-ca+2bc}+\frac{b^3}{3b-bc-ab+2ca}+\frac{c^3}{3c-ca-bc+2ab}+3abc\)