a: Xét (O) có
ΔBEC nội tiếpBC là đường kính
Do đó: ΔBEC vuông tại E
Xét (O) có
ΔBDC nội tiếpBC là đường kính
Do đó: ΔBDC vuông tại D
Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại H
Do đó: AH⊥BC
b: Xét tứ giác AMON có
\(\widehat{AMO}+\widehat{ANO}=180^0\)
Do đó: AMON là tứ giác nội tiếp(1)
Xét tứ giác AKON có
\(\widehat{AKO}+\widehat{ANO}=180^0\)
Do đó: AKON là tứ giác nội tiếp(2)
Từ (1), (2) suy ra AMKN là tứ giác nội tiếp
Suy ra: \(\widehat{AKN}=\widehat{AMN}=\widehat{ANM}\)