Cho a,b,c,d>0 chứng minh: \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}>1\)
Cho \(\left(a+b+c\right)^2=a^2+b^2+c^2.\) C/m \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=1\)
Cho a, b, c từng đôi một khác nhau thỏa mãn ( a + b + c )^2 = a^2 + b^2 + c^2. Rút gọn :
C = \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Cho a, b, c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Hãy tính: \(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Giúp tớ với ạ~
Cho a,b,c lớn hơn 0 và\(a+b+c\le1\)
CM; \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)
Cho a, b, c > 0 và a + b + c \(\le\)1. Chứng minh rằng:
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)
cho các số thực a,b,c không âm thỏa mãn không có hai số nào đồng thời =0và a2+b2+c2=2(ab+bc+ca).CMR
\(\sqrt{\frac{2ab}{a^2+b^2}}\)+\(\sqrt{\frac{2bc}{b^2+c^2}}\)+\(\sqrt{\frac{2ac}{a^2+c^2}}\)\(\ge\)1
Cho a,b,c khác 0; a2+2bc khác 0 ;b2+2ca khác 0; c2+2ab khác 0 và a2+b2+c2=(a+b+c)2
cmr : S=a2/a2+2bc + b2/b2+2ac + c2/c2+2ab =1
M=bc/a2+2bc + ca/b2+2ac + ab/c2+2ab=1
giúp mk nha
mk cảm ơn nhiều
Cho a, b, c > 0 thỏa mãn abc = 1.
CMR : \(\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+\dfrac{9}{2ab+2bc+2ac}\ge\dfrac{9}{2}\)