Bạn xem lại đề, có gì đó không ổn.
Ngoài ra, ko thấy điều kiện gì cho a;b;c cả, nghĩa là a;b;c bất kì?
Bạn xem lại đề, có gì đó không ổn.
Ngoài ra, ko thấy điều kiện gì cho a;b;c cả, nghĩa là a;b;c bất kì?
\(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
Cho a,b,c,d∈R.CMR a2+b2≥2ab(1) Áp dụng cm các bđt sau:
a)\(a^4+b^4+c^4+d^4\ge4abcd\)
b)\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge8abc\)
c) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge256abcd\)
Cho a,b,c>0. CM các bđt sau:
a)\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)^2\)
b)\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
c)\(9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác cm:
a)\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b)\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
c)\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)
d)\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\)
Xác định điều kiện của a,b để:
a, \(A\cap B\ne\varnothing\)với \(A=\left(a-1;a+2\right);B=(b;b+4]\)
b, \(E\subset\left(C\cup D\right)\) với \(C=\left[-1;4\right];D=R\backslash\left(-3;3\right);E=\left[a;b\right]\)
Cho a,b,c∈R.CM bđt \(a^2+b^2+c^2\ge ab+bc+ca\) (1). Áp dụng cm các bđt sau:
a)\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
b)\(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)
c)\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d)\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
e)\(\frac{a+b+c}{3}\ge\sqrt{\frac{ab+bc+ca}{3}}vớia,b,c>0\)
f)\(a^4+b^4+c^4\ge abc\) nếu a+b+c=1
Cho tập hợp \(A=\left\{x\in R|\left|x\right| < 3\right\}\), \(B=\left\{0,1,3\right\}\), \(C=\left\{x\in R|\left(x^2-4x+3\right)\left(x^2-4\right)=0\right\}\). Khẳng định nào sau đây đúng
A. \(\left(A\B\right)\cup C=\left\{-2;-1;2;3\right\}\)
B.\(C_nB=\phi\)
C. \(\left(B\cap C\right)\A=\left\{1\right\}\)
D. \(C_{A\cup B}C=\left\{-1;0\right\}\)
(Kèm lời giải)
Cho các số thực a,b,c đôi một khác nhau thõa mãn \(0\le a;b;c\le2\).
CMR : \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{9}{4}\)
Cho \(A=\left\{x\in R/\frac{1}{\left|x-2\right|}>2\right\}\);\(B=\left\{x\in R/\left|x-1\right|< 1\right\}\).Hãy tìm \(A\cup B,A\B\)