a) \(x^2\left(x-3\right)+27-9x=0\)
\(x^2\left(x-3\right)+9\left(3-x\right)=0\)
\(x^2\left(x-3\right)-9\left(x-3\right)=0\)
\(\left(x^2-9\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=9\\x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=3\end{cases}}\Rightarrow x=3\)
vay \(x=3\)
a) \(x^2-4x+3\)
= \(x^2-3x-x+3\)
\(=\left(x^2-3x\right)-\left(x-3\right)\)
\(=x\left(x-3\right)-\left(x-3\right)\)
\(=\left(x-1\right)\left(x-3\right)\)
a)\(x^2-4x+3=x^2-3x-x+3=x\left(x-3\right)-\left(x-3\right)=\left(x-3\right)\left(x-1\right)\)
b)\(x^2+x-6=x^2+3x-2x-6=x\left(x+3\right)-2\left(x+3\right)=\left(x-2\right)\left(x+3\right)\)
c)\(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-3\right)\left(x-2\right)\)
d)\(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
\(x^2-4x+3\)
\(=x^2-3x-x+3\)
\(=x\left(x-3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x-1\right)\)