Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

 a) Vẽ hình 62 (tạo bởi các cung tròn) với HI = 10cm và HO = BI = 2cm. Nêu cách vẽ.

b) Tính diện tích hình HOABINH (miền gạch sọc).

c) Chứng tỏ rằng hình tròn đường kính NA có cùng diện tích với hình HOABINH đó .

Giải bài 83 trang 99 SGK Toán 9 Tập 2 | Giải toán lớp 9

Hình 62

Cao Minh Tâm
21 tháng 11 2017 lúc 14:01

a) Cách vẽ

- Vẽ nửa đường tròn đường kính HI = 10cm, tâm M.

- Trên đường kính HI lấy điểm O và điểm B sao cho HO = BI = 2cm.

- Vẽ hai nửa đường tròn đường kính HO, BI nằm cùng phía với đường tròn (M).

- Vẽ nửa đường tròn đường kính OB nằm khác phía đối với đường tròn (M). Đường thẳng vuông góc với HI tại M cắt (M) tại N và cắt đường tròn đường kính OB tại A.

b)

Giải bài 83 trang 99 SGK Toán 9 Tập 2 | Giải toán lớp 9

Diện tích miền gạch sọc bằng:

S = S 1 − S 2 − S 3 + S 4

với:

+ S 1  là nửa đường tròn đường kính HI

Giải bài 83 trang 99 SGK Toán 9 Tập 2 | Giải toán lớp 9

+  S 2 ;   S 3 là nửa đường tròn đường kính HO và BI.

Giải bài 83 trang 99 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Ta tính OB:

Ta có: HO+ OB + BI = HI

⇔ 2+ OB + 2= 10 nên OB = 6

+ S4 là nửa đường tròn đường kính OB

Giải bài 83 trang 99 SGK Toán 9 Tập 2 | Giải toán lớp 9

c)Ta có: Giải bài 83 trang 99 SGK Toán 9 Tập 2 | Giải toán lớp 9

Do đó, NA = MN+ MA= 8

Diện tích hình tròn đường kính NA bằng :  π 4 2   =   16 π   ( c m 2 )   ( 2 )

so sánh (1) và (2) ta thấy hình tròn đường kính NA có cùng diện tích với hình HOABINH.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Lường Hải
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết