a: Để A là số nguyên tố thì x+2=2
=>x=0
b: Để A max thì x+2 min
=>x+2=2
=>x=0
a: Để A là số nguyên tố thì x+2=2
=>x=0
b: Để A max thì x+2 min
=>x+2=2
=>x=0
\(B=\dfrac{2-x}{2\sqrt{x+x}}-\dfrac{1}{\sqrt{x}}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}\left(x>0;x\ne4\right)\)
a. Tìm số tự nhiên x để B đạt min
b. Tìm x để \(\sqrt{B}>\dfrac{1}{2}\)
tìm x thuộc N để (x^2-2)^2 +36 là số nguyên tố
tìm x thuộc N để (x2-2)2 +36 là số nguyên tố
Tìm các số tự nhiên x,y,z để \(A=x^2\left(y+z\right)+y^2\left(x+z\right)+z^2\left(x+y\right)\) là số nguyên tố
tìm x thuộc Z để x3+x2+x+1 là lập phương của 1 số tự nhiên
Cho 2 biểu thức A= \(\dfrac{7}{\sqrt{x}+8}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)
a) Chứng minh B= \(\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b) Tìm GTLN của B
c) Tìm số nguyên x để biểu thức P = A.B có giá trị là số nguyên.
Bài 2 : Cho A = \(\frac{x\sqrt{x}+1}{x+2\sqrt{x}+1}\) và B = \(\frac{2x+6\sqrt{x}+7}{x\sqrt{x}+1}\)- \(\frac{1}{\sqrt{x}+1}\)( x lớn hơn hoặc bằng 0 )
a. Rút gọn A và tính giá trị của A khi x =4
b. Rút gọn M =A.B . Tìm M để M > 2
c. Tìm x để M là số nguyên
Bài 3 :
1) Cho A = \(\frac{2\sqrt{x}+5}{\sqrt{x}-1}\). Tìm x nguyên để biểu thức A nhận giá trị nguyên
2) Cho B = \(\frac{2\sqrt{x}}{x+4}\). Tìm GTLN của B
3) Cho C = \(\frac{2\sqrt{x}-1}{\sqrt{x}+1}\). Tìm giá trị nguyên của x để C < 1
4) Cho D = \(\frac{2\sqrt{x}+7}{\sqrt{x}-1}\)( x > 0 ; x # 1 ) . Tìm số tự nhiên x để D có giá trị lớn nhất ? Tìm giá trị lớn nhất đó của D ?
a/ Rút gọn
b/ Tìm các giá trị của x để trị tuyệt đối /A/=2
c/ Tìm x thuộc N sao cho A là số tự nhiên
\(A=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-1\)
1. Tìm x là số chính phương để P nhận giá trị nguyên:
\(P=\dfrac{5-3\sqrt{x}}{\sqrt{x}-1}\)
2. Tìm GTLN của bthức sau:
\(C=\dfrac{2022}{3x^2-5x+1}\)
Tìm x thuộc Z để \(\sqrt{x^2-3x+17}\)là số tự nhiên