a: Xét ΔADC và ΔAEB có
AD=AE
\(\widehat{DAC}\) chung
AC=AB
Do đó: ΔADC=ΔAEB
=>DC=EB và \(\widehat{ADC}=\widehat{AEB}\)
b: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
DC=EB
BC chung
Do đó: ΔDBC=ΔECB
=>\(\widehat{DCB}=\widehat{EBC}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
=>ΔOBC cân tại O
c: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,M thẳng hàng