\(a,\Leftrightarrow\left|3x-1\right|=7\Leftrightarrow\left[{}\begin{matrix}3x-1=7\\1-3x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow3^{2x}:3^x=81=3^4\\ \Leftrightarrow3^x=3^4\Leftrightarrow x=4\)
a: \(\Leftrightarrow\left|3x-1\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=7\\3x-1=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-2\end{matrix}\right.\)
a) |3x - 1| -5=2
|3x - 1| =2+5
|3x - 1|=7
⇒3x - 1 =7 hoặc 3x - 1= -7
TH1:
3x-1=7
3x=7+1
3x=8
x=8:3
x=\(\dfrac{8}{3}\)
TH2:
3x - 1 = -7
3x= -7+1
3x= -6
x= (-6):3
x=-2
Vậy x∈{\(\dfrac{8}{3}\);-2}
b) 9\(^x\):3\(^x\)=81
(9:3)\(^x\)=81
3\(^x\)=81
3\(^x\)=3\(^4\)
⇒x=4
Vậy x=4