Ta có:
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{59}\cdot3\)
\(A=3\cdot\left(2+2^3+2^5+...+2^{59}\right)\)
A chia hết cho 3
____
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(A=2\cdot\left(1+4\right)+2^2\cdot\left(1+4\right)+...+2^{58}\cdot\left(1+4\right)\)
\(A=2\cdot5+2^2\cdot5+...+2^{58}\cdot5\)
\(A=5\cdot\left(2+2^2+...+2^{58}\right)\)
Vậy A chia hết cho 5
____
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)
\(A=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)
\(A=7\cdot\left(2+2^4+...+2^{58}\right)\)
Vậy A chia hết cho 7