\(x\left(1+5x\right)\)
\(\left(x-3\right)\left(x+3\right)\)
\(\left(x^2+1\right)\left(2x+1\right)\)
a x + 5x^2
=x(1+ 5x)
b x^2 – 9
=x^2 – 3^2
=(x-3)(x+3)
c 2x^3 + x^2 + 2x + 1
=(2x^3 + x^2) + (2x + 1)
=x^2(2x + 1)+(2x + 1)
=(2x + 1)(x^2+1)
\(x\left(1+5x\right)\)
\(\left(x-3\right)\left(x+3\right)\)
\(\left(x^2+1\right)\left(2x+1\right)\)
a x + 5x^2
=x(1+ 5x)
b x^2 – 9
=x^2 – 3^2
=(x-3)(x+3)
c 2x^3 + x^2 + 2x + 1
=(2x^3 + x^2) + (2x + 1)
=x^2(2x + 1)+(2x + 1)
=(2x + 1)(x^2+1)
a) (1,0 điểm) 4x^2 + 8x.
b) (1,0 điểm) x^2 – 9 .
c) (1,0 điểm) 2x^3 – 3x^2 + 2x – 3.
phân tích đa thức thành nhân tử, trình bày ra luôn
a) (1,0 điểm) (x – 1)(2x + 3) – 2x 2 + 3x.
b) (1,0 điểm) (x + 3)2 – (x + 2) (x – 2).
rút gọn biểu thức, trình bày ra lun
a) (1,0 điểm) x + 5x^2
b) (1,0 điểm) x^2 – 9 .
c) (1,0 điểm) 2x^3 + x^2 + 2x + 1
a) (1,0 điểm) (3 + x) (4 – x) + x^2 – 2x.
b) (1,0 điểm) (x – 1)^2 – (x + 2) (x – 2).
trình bày ra hết lun
a) (1,0 điểm) (x – 2)^2 .
b) (1,0 điểm) (x + 1)^3 .
c) (1,0 điểm) x^2 – 5^2
hằng đảng thức, trình bày ra hết luôn
Bài 2 (1,0 điểm). Giải phương trình và bất phương trình sau: a) |5x| = - 3x + 2 b) 6x – 2 < 5x + 3 Bài 3 (1,0 điểm.) Giải bất phương trình b) x – 3 x – 4 x –5 x – 6 ——— + ——– + ——– +——–
b) 4x(2 – x) + (2x + 1)^2 = 2.
c) (x – 3)3 – x^2 (x – 9) = 0.
tìm x, trình bày ra hết lun
b) 4x(2 – x) + (2x + 1)^2 = 2.
c) (x – 3)^3 – x^2 (x – 9) = 0.
tìm x, trình bày ra hết lun
a) (1,0 điểm) (3 + x) (4 – x) + x^2 – 2x.
b) (1,0 điểm) (x – 1)^2 – (x + 2) (x – 2).