Đề bài : \(\dfrac{97}{20}\times\left(\dfrac{25}{8}-\dfrac{221}{200}\right)< x< \dfrac{91}{10}\times\left(\dfrac{137}{20}+\dfrac{11}{4}\right)\)
\(\dfrac{97}{20}\times\left(\dfrac{25}{8}-\dfrac{221}{200}\right)=\dfrac{97}{20}\times\dfrac{101}{50}=\dfrac{9797}{1000}\)
\(\dfrac{91}{10}\times\left(\dfrac{137}{20}+\dfrac{11}{4}\right)=\dfrac{91}{10}\times\dfrac{48}{5}=\dfrac{2184}{25}=\dfrac{2184\times40}{25\times40}=\dfrac{87360}{1000}\)
\(\Rightarrow\dfrac{9797}{1000}< x< \dfrac{87360}{1000}\)
Vậy \(x\in\left(\dfrac{9797}{1000};\dfrac{87360}{1000}\right)\)