`|7x+1|-|5x+6|=0`
`<=> |7x+1|=|5x+6|`
\(\Leftrightarrow\left[{}\begin{matrix}7x+1=5x+6\\7x+1=-5x-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{12}\end{matrix}\right.\)
Vậy...
|7x+1| - |5x+6|=0
⇔ |7x+1| = |5x+6|
⇔\(\left[{}\begin{matrix}7x+1=5x+6 \\7x+1=-5x-6\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}2x=5\\12x=-7\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{12}\end{matrix}\right.\)
\(\left|7x+1\right|-\left|5x+6\right|=0\)
\(\Rightarrow\left|7x+1\right|=\left|5x+6\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}7x+1=5x+6\\7x+1=-5x-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{12}\end{matrix}\right.\)