\(\dfrac{60}{x}-\dfrac{60}{x+20}=\dfrac{1}{2}\left(đk:x>0\right)\)
\(\Leftrightarrow\dfrac{120\left(x+20\right)-120x-x\left(x+20\right)}{2x\left(x+20\right)}=0\)
\(\Leftrightarrow120x+2400-120x-x^2-20x=0\)
\(\Leftrightarrow-x^2-20x+2400=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=40\left(n\right)\\x_2=-60\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{40\right\}\)