\(4x-x^2-2=0\)
=>\(x^2-4x+2=0\)
=>\(x^2-4x+4-2=0\)
=>\(\left(x-2\right)^2=2\)
=>\(\left[{}\begin{matrix}x-2=\sqrt{2}\\x-2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\\x=2-\sqrt{2}\end{matrix}\right.\)
\(4x-x^2-2=0\)
=>\(x^2-4x+2=0\)
=>\(x^2-4x+4-2=0\)
=>\(\left(x-2\right)^2=2\)
=>\(\left[{}\begin{matrix}x-2=\sqrt{2}\\x-2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\\x=2-\sqrt{2}\end{matrix}\right.\)
giải pt
a 3x(x-1)+2(x-1)=0
b x^2-1-(x+5)(2-x)=0
c 2x^3 +4x^2-x^2+2=0
d x(2x-3)-4x+6=0
e x^3-1=x(x-1)
f (2x-5)^2 -x^2-4x-4=0
h (x-2)(x^2+3x-2)-x^3+8=0
giai phuong trinh
x*(2x+3)2 -4x2+9=0
\(x-\sqrt{x-3}-5=0\)
\(x^3-4x^2-3x+6=0\)
\(3x^3+4x^2-5x-6=0\)
\(\sqrt{x^2+4x+8}+\sqrt{x^2+4x+4}=\sqrt{2\cdot\left(x^2+4x+6\right)}\)
Rút gọn biểu thức:
a) \(\dfrac{\sqrt{x^2+4x+4}}{x-1}\)
b) \(x-2y-\sqrt{x^2-4xy+4y^2}\) ( x>= 0; y>=0)
c) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-4}\)
d) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-2}\)
1.\(\sqrt{x^2-4x+3}=x-2\)
2.\(\sqrt{4x^2-4x+1}=x-1\)
3. \(2x-\sqrt{4x-1}=0\)
4. \(x-2\sqrt{x-1}=16\)
2. Xác định các hệ số a,b,c Tính biệt thức từ đó áp dụng công thức nghiệm để giải các pt sau:
a. \(3x^2-4x+1=0\)
b. \(-4x^2+4x+1=0\)
d. \(x^2-\sqrt{8}x+2=0\)
e. \(x^2-6x+5=0\)
Giải các phương trình sau:
a \(x^2+3x+4=0\)
b \(3x^3-x+2=0\)
c \(x^4-4x^3-9x^2+8x+4=0\)
d \(x^4+4x^3+6x^2-5x-8=0\)
\(\left(x^2+x-1\right)^2+4x^2+4x=0\)
Tìm x biết
a. \(4x^2+2x+4x+2=0\)
b. \(15x^2-25x-10=0\)
c. \(3x^2-27=0\)
\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
\(x+\sqrt{5-4x}=0\)
\(\sqrt{1-2x^2}=x-1\)
` P = ( (3+x)/(3-x) - (3-x)/(3+x) - (4x^2)/( x^2-9) ) . ( (5)/(3-x) - (4x+2)/(3x-x^2) ) `
a) Rút gọn
b) Tính P với `x^2 - 4x + 3 = 0 `
c) Tìm x để P > 0
d) Tìm x thuộc Z để P thuộc Z
e) Tìm x để P = -4
g) Tìm GTNN của P với x thuộc Z
h) Tìm x để P > 4x