\(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{2021}-\dfrac{1}{2025}\\ =1-\dfrac{1}{2025}\\ =\dfrac{2024}{2025}\)
`4/(1.5) + 4/(5.9) + 4/(9.13) + ... + 4/(2017.2021) + 4/(2021.2025)`
`= 1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/2017 - 1/2021 + 1/2021 - 1/2025`
`= 1 - 1/2025`
`= 2025/2025 - 1/2025`
`= 2024/2025`